view +scheme/Utux.m @ 1037:2d7ba44340d0 feature/burgers1d

Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Fri, 18 Jan 2019 09:02:02 +0100
parents 8a9393084b30
children 433c89bf19e0
line wrap: on
line source

classdef Utux < scheme.Scheme
   properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing
        grid % Grid
        order % Order accuracy for the approximation

        a % Wave speed
          % Can either be a constant or function handle.

        H % Discrete norm
        D

        D1
        Hi
        e_l
        e_r
    end


    methods
        function obj = Utux(g, order, a, fluxSplitting, opSet)
            default_arg('opSet',@sbp.D2Standard);
            default_arg('a',1);
            default_arg('fluxSplitting',[]);

            assertType(g, 'grid.Cartesian');
            if isa(a, 'function_handle')
                obj.a = spdiag(grid.evalOn(g, a));
            else
                obj.a = a;
            end

            m = g.size();
            xl = g.getBoundary('l');
            xr = g.getBoundary('r');
            xlim = {xl, xr};

            ops = opSet(m, xlim, order);

            if (isequal(opSet, @sbp.D1Upwind))
                obj.D1 = (ops.Dp + ops.Dm)/2;
                DissOp = (ops.Dm - ops.Dp)/2;
                obj.D = -(obj.a*obj.D1 + fluxSplitting*DissOp);
            else 
                obj.D1 = ops.D1;
                obj.D = -obj.a*obj.D1;
            end

            obj.grid = g;

            obj.H =  ops.H;
            obj.Hi = ops.HI;

            obj.e_l = ops.e_l;
            obj.e_r = ops.e_r;

            obj.m = m;
            obj.h = ops.h;
            obj.order = order;
        end
        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type)
            default_arg('type','dirichlet');
            sigma_left = -1; % Scalar penalty parameter for left boundary
            sigma_right = 1; % Scalar penalty parameter for right boundary
            switch boundary
                % Can only specify boundary condition where there is inflow
                % Extract the postivie resp. negative part of a, for the left
                % resp. right boundary, and set other values of a to zero.
                % Then the closure will effectively only contribute to inflow boundaries
                case {'l','L','left','Left'}
                    a_inflow = obj.a;
                    a_inflow(a_inflow < 0) = 0;
                    tau = sigma_left*a_inflow*obj.e_l;
                    closure = obj.Hi*tau*obj.e_l';
                case {'r','R','right','Right'}
                    a_inflow = obj.a;
                    a_inflow(a_inflow > 0) = 0;
                    tau = sigma_right*a_inflow*obj.e_r;
                    closure = obj.Hi*tau*obj.e_r';
            end
            penalty = -obj.Hi*tau;

         end

         function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
             switch boundary
                 % Upwind coupling
                 case {'l','left'}
                     tau = -1*obj.a*obj.e_l;
                     closure = obj.Hi*tau*obj.e_l';
                     penalty = -obj.Hi*tau*neighbour_scheme.e_r';
                 case {'r','right'}
                     tau = 0*obj.a*obj.e_r;
                     closure = obj.Hi*tau*obj.e_r';
                     penalty = -obj.Hi*tau*neighbour_scheme.e_l';
             end

         end

        function N = size(obj)
            N = obj.m;
        end

    end

    methods(Static)
        % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u
        % and bound_v of scheme schm_v.
        %   [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l')
        function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v)
            [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v);
            [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u);
        end
    end
end