Mercurial > repos > public > sbplib
view +scheme/Utux.m @ 1197:433c89bf19e0 feature/rv
Merge with default
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Wed, 07 Aug 2019 15:23:42 +0200 |
parents | 8a9393084b30 0c504a21432d |
children |
line wrap: on
line source
classdef Utux < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid % Grid order % Order accuracy for the approximation a % Wave speed % Can either be a constant or function handle. H % Discrete norm D D1 Hi e_l e_r end methods function obj = Utux(g, order, a, fluxSplitting, opSet) default_arg('opSet',@sbp.D2Standard); default_arg('a',1); default_arg('fluxSplitting',[]); assertType(g, 'grid.Cartesian'); if isa(a, 'function_handle') obj.a = spdiag(grid.evalOn(g, a)); else obj.a = a; end m = g.size(); xl = g.getBoundary('l'); xr = g.getBoundary('r'); xlim = {xl, xr}; ops = opSet(m, xlim, order); if (isequal(opSet, @sbp.D1Upwind)) obj.D1 = (ops.Dp + ops.Dm)/2; DissOp = (ops.Dm - ops.Dp)/2; obj.D = -(obj.a*obj.D1 + fluxSplitting*DissOp); else obj.D1 = ops.D1; obj.D = -obj.a*obj.D1; end obj.grid = g; obj.H = ops.H; obj.Hi = ops.HI; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.m = m; obj.h = ops.h; obj.order = order; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type) default_arg('type','dirichlet'); s = obj.getBoundarySign(boundary); e = obj.getBoundaryOperator('e', boundary); switch boundary % Can only specify boundary condition where there is inflow % Extract the postivie resp. negative part of a, for the left % resp. right boundary, and set other values of a to zero. % Then the closure will effectively only contribute to inflow boundaries case {'l'} a_inflow = obj.a; a_inflow(a_inflow < 0) = 0; case {'r'} a_inflow = obj.a; a_inflow(a_inflow > 0) = 0; end tau = s*a_inflow*e; closure = obj.Hi*tau*e'; penalty = -obj.Hi*tau; end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) switch boundary % Upwind coupling case {'l','left'} tau = -1*obj.a*obj.e_l; closure = obj.Hi*tau*obj.e_l'; penalty = -obj.Hi*tau*neighbour_scheme.e_r'; case {'r','right'} tau = 0*obj.a*obj.e_r; closure = obj.Hi*tau*obj.e_r'; penalty = -obj.Hi*tau*neighbour_scheme.e_l'; end end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) assertIsMember(boundary, {'l', 'r'}) switch boundary case {'r'} s = 1; case {'l'} s = -1; end end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string % boundary -- string function o = getBoundaryOperator(obj, op, boundary) assertIsMember(op, {'e'}) assertIsMember(boundary, {'l', 'r'}) o = obj.([op, '_', boundary]); end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string % Note: for 1d diffOps, the boundary quadrature is the scalar 1. function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'l', 'r'}) H_b = 1; end function N = size(obj) N = obj.m; end end end