Mercurial > repos > public > sbplib
view +rv/+time/RungekuttaExteriorRvBdf.m @ 1037:2d7ba44340d0 feature/burgers1d
Pass scheme specific parameters as cell array. This will enabale constructDiffOps to be more general. In addition, allow for schemes returning function handles as diffOps, which is currently how non-linear schemes such as Burgers1d are implemented.
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 18 Jan 2019 09:02:02 +0100 |
parents | 2ef20d00b386 |
children | 010bb2677230 |
line wrap: on
line source
classdef RungekuttaExteriorRvBdf < time.Timestepper properties F % RHS of the ODE k % Time step t % Time point v % Solution vector n % Time level coeffs % The coefficents used for the RK time integration % Properties related to the residual viscositys RV % Residual Viscosity operator v_prev % Solution vector at previous time levels, used for the RV evaluation DvDt % Function for computing the time deriative used for the RV evaluation lowerBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. % dictates which accuracy the boot-strapping should start from. upperBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. % Dictates the order of accuracy used once the boot-strapping is complete. % Convenience properties. Only for plotting viscosity % Total viscosity residualViscosity % Residual viscosity firstOrderViscosity % first order viscosity dvdt % Evaluated time derivative in residual Df % Evaluated flux in residual end methods function obj = RungekuttaExteriorRvBdf(F, k, t0, v0, RV, rkOrder, bdfOrders) obj.F = F; obj.k = k; obj.t = t0; obj.v = v0; obj.n = 0; % Extract the coefficients for the specified rkOrder % used for the RK updates from the Butcher tableua. [s,a,b,c] = time.rk.butcherTableau(rkOrder); obj.coeffs = struct('s',s,'a',a,'b',b,'c',c); obj.RV = RV; % TBD: Decide on if the initialization of the previous stages used by % the BDF should be done here, or if it should be checked for each % step taken. % If it is moved here, then multiple branching stages can be removed in step() % but this will effectively result in a plotted simulation starting from n = upperBdfOrder. % In addition, the properties lowerBdfOrder and upperBdfOrder can be removed. obj.lowerBdfOrder = bdfOrders.lowerBdfOrder; obj.upperBdfOrder = bdfOrders.upperBdfOrder; assert((obj.lowerBdfOrder >= 1) && (obj.upperBdfOrder <= 6)); obj.v_prev = []; obj.DvDt = rv.time.BdfDerivative(); obj.viscosity = zeros(size(v0)); obj.firstOrderViscosity = zeros(size(v0)); obj.residualViscosity = zeros(size(v0)); obj.dvdt = zeros(size(v0)); obj.Df = zeros(size(v0)); end function [v, t] = getV(obj) v = obj.v; t = obj.t; end function state = getState(obj) state = struct('v', obj.v, 'dvdt', obj.dvdt, 'Df', obj.Df, 'viscosity', obj.viscosity, 'residualViscosity', obj.residualViscosity, 'firstOrderViscosity', obj.firstOrderViscosity, 't', obj.t); end function obj = step(obj) % Store current time level and update v_prev numStoredStages = size(obj.v_prev,2); if (numStoredStages < obj.upperBdfOrder) obj.v_prev = [obj.v, obj.v_prev]; numStoredStages = numStoredStages+1; else obj.v_prev(:,2:end) = obj.v_prev(:,1:end-1); obj.v_prev(:,1) = obj.v; end % Fix the viscosity of the RHS function F F_visc = @(v,t) obj.F(v,t,obj.viscosity); obj.v = time.rk.rungekutta(obj.v, obj.t, obj.k, F_visc, obj.coeffs); obj.t = obj.t + obj.k; obj.n = obj.n + 1; %Calculate dvdt and evaluate RV for the new time level if ((numStoredStages >= obj.lowerBdfOrder) && (numStoredStages <= obj.upperBdfOrder)) obj.dvdt = obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k); [obj.viscosity, obj.Df, obj.firstOrderViscosity, obj.residualViscosity] = obj.RV.evaluate(obj.v,obj.dvdt); end end end end