Mercurial > repos > public > sbplib
view +rv/+time/RungekuttaExteriorRvBdf.m @ 1152:010bb2677230 feature/rv
Clean up in +rv/+time. Make the time stepping more efficient by not storing unnessecary properties in the RK-RV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 05 Mar 2019 10:53:34 +0100 |
parents | 2ef20d00b386 |
children | 3108963cc42c |
line wrap: on
line source
classdef RungekuttaExteriorRvBdf < time.Timestepper properties F % RHS of the ODE k % Time step t % Time point v % Solution vector n % Time level coeffs % The coefficents used for the RK time integration % Properties related to the residual viscositys RV % Residual Viscosity operator v_prev % Solution vector at previous time levels, used for the RV evaluation DvDt % Function for computing the time deriative used for the RV evaluation lowerBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. % dictates which accuracy the boot-strapping should start from. upperBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. % Dictates the order of accuracy used once the boot-strapping is complete. end methods function obj = RungekuttaExteriorRvBdf(F, k, t0, v0, RV, rkOrder, bdfOrders) obj.F = F; obj.k = k; obj.t = t0; obj.v = v0; obj.n = 0; % Extract the coefficients for the specified rkOrder % used for the RK updates from the Butcher tableua. [s,a,b,c] = time.rk.butcherTableau(rkOrder); obj.coeffs = struct('s',s,'a',a,'b',b,'c',c); obj.RV = RV; obj.lowerBdfOrder = bdfOrders.lowerBdfOrder; obj.upperBdfOrder = bdfOrders.upperBdfOrder; assert((obj.lowerBdfOrder >= 1) && (obj.upperBdfOrder <= 6)); obj.v_prev = []; obj.DvDt = rv.time.BdfDerivative(); end function [v, t] = getV(obj) v = obj.v; t = obj.t; end function state = getState(obj) if (size(obj.v_prev,2) >= obj.lowerBdfOrder) dvdt = obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k); [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt); else viscosity = zeros(size(obj.v)); dvdt = zeros(size(obj.v)); Df = zeros(size(obj.v)); firstOrderViscosity = zeros(size(obj.v)); residualViscosity = zeros(size(obj.v)); end state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t); end function obj = step(obj) nStoredStages = size(obj.v_prev,2); %Calculate viscosity for the new time level if (nStoredStages >= obj.lowerBdfOrder) viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k)); else viscosity = zeros(size(obj.v)); end % Store current time level and update v_prev if (nStoredStages < obj.upperBdfOrder) obj.v_prev = [obj.v, obj.v_prev]; else obj.v_prev(:,2:end) = obj.v_prev(:,1:end-1); obj.v_prev(:,1) = obj.v; end % Fix the viscosity of the RHS function F F_visc = @(v,t) obj.F(v, t, viscosity); obj.v = time.rk.rungekutta(obj.v, obj.t, obj.k, F_visc, obj.coeffs); obj.t = obj.t + obj.k; obj.n = obj.n + 1; end end end