Mercurial > repos > public > sbplib
view +scheme/Utux.m @ 1198:2924b3a9b921 feature/d2_compatible
Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Fri, 16 Aug 2019 14:30:28 -0700 |
parents | 0c504a21432d |
children | 433c89bf19e0 |
line wrap: on
line source
classdef Utux < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing grid % Grid order % Order accuracy for the approximation H % Discrete norm D D1 Hi e_l e_r v0 end methods function obj = Utux(g, order, opSet) default_arg('opSet',@sbp.D2Standard); m = g.size(); xl = g.getBoundary('l'); xr = g.getBoundary('r'); xlim = {xl, xr}; ops = opSet(m, xlim, order); obj.D1 = ops.D1; obj.grid = g; obj.H = ops.H; obj.Hi = ops.HI; obj.e_l = ops.e_l; obj.e_r = ops.e_r; obj.D = -obj.D1; obj.m = m; obj.h = ops.h; obj.order = order; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type) default_arg('type','dirichlet'); tau =-1*obj.e_l; closure = obj.Hi*tau*obj.e_l'; penalty = -obj.Hi*tau; end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) switch boundary % Upwind coupling case {'l','left'} tau = -1*obj.e_l; closure = obj.Hi*tau*obj.e_l'; penalty = -obj.Hi*tau*neighbour_scheme.e_r'; case {'r','right'} tau = 0*obj.e_r; closure = obj.Hi*tau*obj.e_r'; penalty = -obj.Hi*tau*neighbour_scheme.e_l'; end end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string % boundary -- string function o = getBoundaryOperator(obj, op, boundary) assertIsMember(op, {'e'}) assertIsMember(boundary, {'l', 'r'}) o = obj.([op, '_', boundary]); end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string % Note: for 1d diffOps, the boundary quadrature is the scalar 1. function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'l', 'r'}) H_b = 1; end function N = size(obj) N = obj.m; end end end