view +scheme/Schrodinger.m @ 1198:2924b3a9b921 feature/d2_compatible

Add OpSet for fully compatible D2Variable, created from regular D2Variable by replacing d1 by first row of D1. Formal reduction by one order of accuracy at the boundary point.
author Martin Almquist <malmquist@stanford.edu>
date Fri, 16 Aug 2019 14:30:28 -0700
parents 0c504a21432d
children
line wrap: on
line source

classdef Schrodinger < scheme.Scheme
    properties
        m % Number of points in each direction, possibly a vector
        h % Grid spacing
        x % Grid
        order % Order accuracy for the approximation

        D % non-stabalized scheme operator
        H % Discrete norm
        M % Derivative norm
        alpha

        D2
        Hi
        e_l
        e_r
        d1_l
        d1_r
        gamm
    end

    methods
        % Solving SE in the form u_t = i*u_xx -i*V;
        function obj = Schrodinger(m,xlim,order,V)
            default_arg('V',0);

            [x, h] = util.get_grid(xlim{:},m);

            ops = sbp.Ordinary(m,h,order);

            obj.D2 = sparse(ops.derivatives.D2);
            obj.H =  sparse(ops.norms.H);
            obj.Hi = sparse(ops.norms.HI);
            obj.M =  sparse(ops.norms.M);
            obj.e_l = sparse(ops.boundary.e_1);
            obj.e_r = sparse(ops.boundary.e_m);
            obj.d1_l = sparse(ops.boundary.S_1);
            obj.d1_r = sparse(ops.boundary.S_m);


            if isa(V,'function_handle')
                V_vec = V(x);
            else
                V_vec = x*0 + V;
            end

            V_mat = spdiags(V_vec,0,m,m);

            obj.D = 1i * obj.D2 - 1i * V_mat;

            obj.m = m;
            obj.h = h;
            obj.order = order;

            obj.x = x;
        end


        % Closure functions return the opertors applied to the own doamin to close the boundary
        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
        %       type                is a string specifying the type of boundary condition if there are several.
        %       data                is a function returning the data that should be applied at the boundary.
        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
        %       neighbour_boundary  is a string specifying which boundary to interface to.
        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
            default_arg('type','dirichlet');
            default_arg('data',0);

            [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary);
            s = obj.getBoundarySign(boundary);

            switch type
                % Dirichlet boundary condition
                case {'D','d','dirichlet'}
                    tau = s * 1i*d;
                    closure = obj.Hi*tau*e';

                    switch class(data)
                        case 'double'
                            penalty = -obj.Hi*tau*data;
                        case 'function_handle'
                            penalty = @(t)-obj.Hi*tau*data(t);
                        otherwise
                            error('Wierd data argument!')
                    end

                % Unknown, boundary condition
                otherwise
                    error('No such boundary condition: type = %s',type);
            end
        end

        function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
            % u denotes the solution in the own domain
            % v denotes the solution in the neighbour domain
            [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary);
            s_u = obj.getBoundarySign(boundary);

            [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary);
            s_v = neighbour_scheme.getBoundarySign(neighbour_boundary);

            a =  -s_u* 1/2 * 1i ;
            b =  a';

            tau = b*d_u;
            sig = -a*e_u;

            closure = obj.Hi * (tau*e_u' + sig*d_u');
            penalty = obj.Hi * (-tau*e_v' - sig*d_v');
        end

        % Returns the boundary operator op for the boundary specified by the string boundary.
        % op        -- string or a cell array of strings
        % boundary  -- string
        function varargout = getBoundaryOperator(obj, op, boundary)
            assertIsMember(boundary, {'l', 'r'})

            if ~iscell(op)
                op = {op};
            end

            for i = 1:numel(op)
                switch op{i}
                case 'e'
                    switch boundary
                    case 'l'
                        e = obj.e_l;
                    case 'r'
                        e = obj.e_r;
                    end
                    varargout{i} = e;

                case 'd'
                    switch boundary
                    case 'l'
                        d = obj.d1_l;
                    case 'r'
                        d = obj.d1_r;
                    end
                    varargout{i} = d;
                end
            end
        end

        % Returns square boundary quadrature matrix, of dimension
        % corresponding to the number of boundary points
        %
        % boundary -- string
        % Note: for 1d diffOps, the boundary quadrature is the scalar 1.
        function H_b = getBoundaryQuadrature(obj, boundary)
            assertIsMember(boundary, {'l', 'r'})

            H_b = 1;
        end

        % Returns the boundary sign. The right boundary is considered the positive boundary
        % boundary -- string
        function s = getBoundarySign(obj, boundary)
            assertIsMember(boundary, {'l', 'r'})

            switch boundary
                case {'r'}
                    s = 1;
                case {'l'}
                    s = -1;
            end
        end

        function N = size(obj)
            N = obj.m;
        end

    end
end