Mercurial > repos > public > sbplib
view +scheme/Schrodinger.m @ 1049:0c504a21432d feature/getBoundaryOp
Add getBoundaryQuadrature to all 1d diffOps
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Tue, 22 Jan 2019 11:17:28 -0800 |
parents | 5afc774fb7c4 |
children |
line wrap: on
line source
classdef Schrodinger < scheme.Scheme properties m % Number of points in each direction, possibly a vector h % Grid spacing x % Grid order % Order accuracy for the approximation D % non-stabalized scheme operator H % Discrete norm M % Derivative norm alpha D2 Hi e_l e_r d1_l d1_r gamm end methods % Solving SE in the form u_t = i*u_xx -i*V; function obj = Schrodinger(m,xlim,order,V) default_arg('V',0); [x, h] = util.get_grid(xlim{:},m); ops = sbp.Ordinary(m,h,order); obj.D2 = sparse(ops.derivatives.D2); obj.H = sparse(ops.norms.H); obj.Hi = sparse(ops.norms.HI); obj.M = sparse(ops.norms.M); obj.e_l = sparse(ops.boundary.e_1); obj.e_r = sparse(ops.boundary.e_m); obj.d1_l = sparse(ops.boundary.S_1); obj.d1_r = sparse(ops.boundary.S_m); if isa(V,'function_handle') V_vec = V(x); else V_vec = x*0 + V; end V_mat = spdiags(V_vec,0,m,m); obj.D = 1i * obj.D2 - 1i * V_mat; obj.m = m; obj.h = h; obj.order = order; obj.x = x; end % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. % type is a string specifying the type of boundary condition if there are several. % data is a function returning the data that should be applied at the boundary. % neighbour_scheme is an instance of Scheme that should be interfaced to. % neighbour_boundary is a string specifying which boundary to interface to. function [closure, penalty] = boundary_condition(obj,boundary,type,data) default_arg('type','dirichlet'); default_arg('data',0); [e, d] = obj.getBoundaryOperator({'e', 'd'}, boundary); s = obj.getBoundarySign(boundary); switch type % Dirichlet boundary condition case {'D','d','dirichlet'} tau = s * 1i*d; closure = obj.Hi*tau*e'; switch class(data) case 'double' penalty = -obj.Hi*tau*data; case 'function_handle' penalty = @(t)-obj.Hi*tau*data(t); otherwise error('Wierd data argument!') end % Unknown, boundary condition otherwise error('No such boundary condition: type = %s',type); end end function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain [e_u, d_u] = obj.getBoundaryOperator({'e', 'd'}, boundary); s_u = obj.getBoundarySign(boundary); [e_v, d_v] = neighbour_scheme.getBoundaryOperator({'e', 'd'}, neighbour_boundary); s_v = neighbour_scheme.getBoundarySign(neighbour_boundary); a = -s_u* 1/2 * 1i ; b = a'; tau = b*d_u; sig = -a*e_u; closure = obj.Hi * (tau*e_u' + sig*d_u'); penalty = obj.Hi * (-tau*e_v' - sig*d_v'); end % Returns the boundary operator op for the boundary specified by the string boundary. % op -- string or a cell array of strings % boundary -- string function varargout = getBoundaryOperator(obj, op, boundary) assertIsMember(boundary, {'l', 'r'}) if ~iscell(op) op = {op}; end for i = 1:numel(op) switch op{i} case 'e' switch boundary case 'l' e = obj.e_l; case 'r' e = obj.e_r; end varargout{i} = e; case 'd' switch boundary case 'l' d = obj.d1_l; case 'r' d = obj.d1_r; end varargout{i} = d; end end end % Returns square boundary quadrature matrix, of dimension % corresponding to the number of boundary points % % boundary -- string % Note: for 1d diffOps, the boundary quadrature is the scalar 1. function H_b = getBoundaryQuadrature(obj, boundary) assertIsMember(boundary, {'l', 'r'}) H_b = 1; end % Returns the boundary sign. The right boundary is considered the positive boundary % boundary -- string function s = getBoundarySign(obj, boundary) assertIsMember(boundary, {'l', 'r'}) switch boundary case {'r'} s = 1; case {'l'} s = -1; end end function N = size(obj) N = obj.m; end end end