Mercurial > repos > public > sbplib
diff +time/SBPInTime.m @ 365:f908ce064f35
Added SBP in time timestepper.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Tue, 24 Jan 2017 14:01:18 +0100 |
parents | |
children | fccd746d8573 14f2be4fe9c1 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+time/SBPInTime.m Tue Jan 24 14:01:18 2017 +0100 @@ -0,0 +1,189 @@ +classdef SBPInTime < time.Timestepper + % The SBP in time method. + % Implemented for v_t = A*v + f(t) + % k_local -- time-step + % Nblock -- number of points in each block + % nodes -- points such that t_n + nodes are the points in block n. + % Each "step" takes one block step and thus advances + % k = k_local*(Nblock-1) in time. + % M -- matrix used in every solve. + % [L,U,P,Q] = lu(M); + properties + M + L + U + P + Q + A + Et_r + penalty + f + k_local + k + t + v + m + n + Nblock + order + nodes + end + + methods + function obj = SBPInTime(A, f, k, order, Nblock, t0, v0, TYPE) + default_arg('TYPE','equidistant'); + default_arg('Nblock',time.SBPInTime.smallestBlockSize(order,TYPE)); + + obj.A = A; + obj.f = f; + obj.k_local = k; + obj.k = k*(Nblock-1); + obj.Nblock = Nblock; + obj.t = t0; + obj.m = length(v0); + obj.n = 0; + + %==== Build the time discretization matrix =====% + switch TYPE + case 'equidistant' + ops = sbp.D2Standard(Nblock,{0,obj.k},order); + case 'optimal' + ops = sbp.D1Nonequidistant(Nblock,{0,obj.k},order); + case 'minimal' + ops = sbp.D1Nonequidistant(Nblock,{0,obj.k},order,'minimal'); + end + + D1 = ops.D1; + HI = ops.HI; + e_l = ops.e_l; + e_r = ops.e_r; + obj.nodes = ops.x; + + Ix = speye(size(A)); + It = speye(Nblock,Nblock); + + obj.Et_r = kron(e_r,Ix); + + % Time derivative + penalty + tau = 1; + Mt = D1 + tau*HI*(e_l*e_l'); + + % penalty to impose "data" + penalty = tau*HI*e_l; + obj.penalty = kron(penalty,Ix); + + Mx = kron(It,A); + Mt = kron(Mt,Ix); + obj.M = Mt - Mx; + %==============================================% + + % LU factorization + [obj.L,obj.U,obj.P,obj.Q] = lu(obj.M); + + % Pretend that the initial condition is the last level + % of a previous step. + obj.v = obj.Et_r * v0; + + end + + function [v,t] = getV(obj) + v = obj.Et_r' * obj.v; + t = obj.t; + end + + function obj = step(obj) + obj.v = time.sbp.sbpintime(obj.v, obj.t, obj.nodes,... + obj.penalty, obj.f, obj.Nblock,... + obj.Et_r,... + obj.L, obj.U, obj.P, obj.Q); + obj.t = obj.t + obj.k; + obj.n = obj.n + obj.Nblock-1; + end + end + + + methods(Static) + + % + function [k,numberOfBlocks] = alignedTimeStep(k,Tend,Nblock) + + % input k is the desired time-step + % Nblock is the number of points per block. + + % Make sure that we reach the final time by advancing + % an integer number of blocks + kblock = (Nblock-1)*k; + numberOfBlocks = ceil(Tend/kblock); + kblock = Tend/(numberOfBlocks); + + % Corrected time step + k = kblock/(Nblock-1); + + end + + function N = smallestBlockSize(order,TYPE) + default_arg('TYPE','equidistant') + + switch TYPE + + case 'equidistant' + switch order + case 2 + N = 2; + case 4 + N = 8; + case 6 + N = 12; + case 8 + N = 16; + case 10 + N = 20; + case 12 + N = 24; + otherwise + error('Operator does not exist'); + end + + case 'optimal' + + switch order + case 4 + N = 8; + case 6 + N = 12; + case 8 + N = 16; + case 10 + N = 20; + case 12 + N = 24; + otherwise + error('Operator does not exist'); + end + + case 'minimal' + + switch order + case 4 + N = 6; + case 6 + N = 10; + case 8 + N = 12; + case 10 + N = 16; + case 12 + N = 20; + otherwise + error('Operator does not exist'); + end + + end + + end + + end + + + +end