Mercurial > repos > public > sbplib
view +time/SBPInTime.m @ 400:14f2be4fe9c1 feature/beams
Add function to center colorlimits.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 31 Jan 2017 13:23:52 +0100 |
parents | f908ce064f35 |
children | 9ff24a14f9ef |
line wrap: on
line source
classdef SBPInTime < time.Timestepper % The SBP in time method. % Implemented for v_t = A*v + f(t) % k_local -- time-step % Nblock -- number of points in each block % nodes -- points such that t_n + nodes are the points in block n. % Each "step" takes one block step and thus advances % k = k_local*(Nblock-1) in time. % M -- matrix used in every solve. % [L,U,P,Q] = lu(M); properties M % System matrix L,U,P % LU factorization of M Q A Et_r penalty f k_local k t v m n Nblock order nodes end methods function obj = SBPInTime(A, f, k, order, Nblock, t0, v0, TYPE) default_arg('TYPE','equidistant'); default_arg('Nblock',time.SBPInTime.smallestBlockSize(order,TYPE)); obj.A = A; obj.f = f; obj.k_local = k; obj.k = k*(Nblock-1); obj.Nblock = Nblock; obj.t = t0; obj.m = length(v0); obj.n = 0; %==== Build the time discretization matrix =====% switch TYPE case 'equidistant' ops = sbp.D2Standard(Nblock,{0,obj.k},order); case 'optimal' ops = sbp.D1Nonequidistant(Nblock,{0,obj.k},order); case 'minimal' ops = sbp.D1Nonequidistant(Nblock,{0,obj.k},order,'minimal'); end D1 = ops.D1; HI = ops.HI; e_l = ops.e_l; e_r = ops.e_r; obj.nodes = ops.x; Ix = speye(size(A)); It = speye(Nblock,Nblock); obj.Et_r = kron(e_r,Ix); % Time derivative + penalty tau = 1; Mt = D1 + tau*HI*(e_l*e_l'); % penalty to impose "data" penalty = tau*HI*e_l; obj.penalty = kron(penalty,Ix); Mx = kron(It,A); Mt = kron(Mt,Ix); obj.M = Mt - Mx; %==============================================% % LU factorization [obj.L,obj.U,obj.P,obj.Q] = lu(obj.M); % Pretend that the initial condition is the last level % of a previous step. obj.v = obj.Et_r * v0; end function [v,t] = getV(obj) v = obj.Et_r' * obj.v; t = obj.t; end function obj = step(obj) obj.v = time.sbp.sbpintime(obj.v, obj.t, obj.nodes,... obj.penalty, obj.f, obj.Nblock,... obj.Et_r,... obj.L, obj.U, obj.P, obj.Q); obj.t = obj.t + obj.k; obj.n = obj.n + obj.Nblock-1; end end methods(Static) % function [k,numberOfBlocks] = alignedTimeStep(k,Tend,Nblock) % input k is the desired time-step % Nblock is the number of points per block. % Make sure that we reach the final time by advancing % an integer number of blocks kblock = (Nblock-1)*k; numberOfBlocks = ceil(Tend/kblock); kblock = Tend/(numberOfBlocks); % Corrected time step k = kblock/(Nblock-1); end function N = smallestBlockSize(order,TYPE) default_arg('TYPE','equidistant') switch TYPE case 'equidistant' switch order case 2 N = 2; case 4 N = 8; case 6 N = 12; case 8 N = 16; case 10 N = 20; case 12 N = 24; otherwise error('Operator does not exist'); end case 'optimal' switch order case 4 N = 8; case 6 N = 12; case 8 N = 16; case 10 N = 20; case 12 N = 24; otherwise error('Operator does not exist'); end case 'minimal' switch order case 4 N = 6; case 6 N = 10; case 8 N = 12; case 10 N = 16; case 12 N = 20; otherwise error('Operator does not exist'); end end end end end