Mercurial > repos > public > sbplib
diff +scheme/Utux2D.m @ 756:f891758ad7a4 feature/d1_staggered
Merge with feature/utux2d.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sat, 16 Jun 2018 14:30:45 -0700 |
parents | f4595f14d696 |
children | 459eeb99130f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Utux2D.m Sat Jun 16 14:30:45 2018 -0700 @@ -0,0 +1,286 @@ +classdef Utux2D < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + grid % Grid + order % Order accuracy for the approximation + v0 % Initial data + + a % Wave speed a = [a1, a2]; + % Can either be a constant vector or a cell array of function handles. + + H % Discrete norm + H_x, H_y % Norms in the x and y directions + Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms + + % Derivatives + Dx, Dy + + % Boundary operators + e_w, e_e, e_s, e_n + + D % Total discrete operator + + % String, type of interface coupling + % Default: 'upwind' + % Other: 'centered' + coupling_type + + % String, type of interpolation operators + % Default: 'AWW' (Almquist Wang Werpers) + % Other: 'MC' (Mattsson Carpenter) + interpolation_type + + + % Cell array, damping on upwstream and downstream sides. + interpolation_damping + + end + + + methods + function obj = Utux2D(g ,order, opSet, a, coupling_type, interpolation_type, interpolation_damping) + + default_arg('interpolation_damping',{0,0}); + default_arg('interpolation_type','AWW'); + default_arg('coupling_type','upwind'); + default_arg('a',1/sqrt(2)*[1, 1]); + default_arg('opSet',@sbp.D2Standard); + + assert(isa(g, 'grid.Cartesian')) + if iscell(a) + a1 = grid.evalOn(g, a{1}); + a2 = grid.evalOn(g, a{2}); + a = {spdiag(a1), spdiag(a2)}; + else + a = {a(1), a(2)}; + end + + m = g.size(); + m_x = m(1); + m_y = m(2); + m_tot = g.N(); + + xlim = {g.x{1}(1), g.x{1}(end)}; + ylim = {g.x{2}(1), g.x{2}(end)}; + obj.grid = g; + + % Operator sets + ops_x = opSet(m_x, xlim, order); + ops_y = opSet(m_y, ylim, order); + Ix = speye(m_x); + Iy = speye(m_y); + + % Norms + Hx = ops_x.H; + Hy = ops_y.H; + Hxi = ops_x.HI; + Hyi = ops_y.HI; + + obj.H_x = Hx; + obj.H_y = Hy; + obj.H = kron(Hx,Hy); + obj.Hi = kron(Hxi,Hyi); + obj.Hx = kron(Hx,Iy); + obj.Hy = kron(Ix,Hy); + obj.Hxi = kron(Hxi,Iy); + obj.Hyi = kron(Ix,Hyi); + + % Derivatives + Dx = ops_x.D1; + Dy = ops_y.D1; + obj.Dx = kron(Dx,Iy); + obj.Dy = kron(Ix,Dy); + + % Boundary operators + obj.e_w = kr(ops_x.e_l, Iy); + obj.e_e = kr(ops_x.e_r, Iy); + obj.e_s = kr(Ix, ops_y.e_l); + obj.e_n = kr(Ix, ops_y.e_r); + + obj.m = m; + obj.h = [ops_x.h ops_y.h]; + obj.order = order; + obj.a = a; + obj.coupling_type = coupling_type; + obj.interpolation_type = interpolation_type; + obj.interpolation_damping = interpolation_damping; + obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy); + + end + % Closure functions return the opertors applied to the own domain to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type) + default_arg('type','dirichlet'); + + sigma = -1; % Scalar penalty parameter + switch boundary + case {'w','W','west','West'} + tau = sigma*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + + case {'s','S','south','South'} + tau = sigma*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + end + penalty = -obj.Hi*tau; + + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + + % Get neighbour boundary operator + switch neighbour_boundary + case {'e','E','east','East'} + e_neighbour = neighbour_scheme.e_e; + m_neighbour = neighbour_scheme.m(2); + case {'w','W','west','West'} + e_neighbour = neighbour_scheme.e_w; + m_neighbour = neighbour_scheme.m(2); + case {'n','N','north','North'} + e_neighbour = neighbour_scheme.e_n; + m_neighbour = neighbour_scheme.m(1); + case {'s','S','south','South'} + e_neighbour = neighbour_scheme.e_s; + m_neighbour = neighbour_scheme.m(1); + end + + switch obj.coupling_type + + % Upwind coupling (energy dissipation) + case 'upwind' + sigma_ds = -1; %"Downstream" penalty + sigma_us = 0; %"Upstream" penalty + + % Energy-preserving coupling (no energy dissipation) + case 'centered' + sigma_ds = -1/2; %"Downstream" penalty + sigma_us = 1/2; %"Upstream" penalty + + otherwise + error(['Interface coupling type ' coupling_type ' is not available.']) + end + + % Check grid ratio for interpolation + switch boundary + case {'w','W','west','West','e','E','east','East'} + m = obj.m(2); + case {'s','S','south','South','n','N','north','North'} + m = obj.m(1); + end + grid_ratio = m/m_neighbour; + if grid_ratio ~= 1 + + [ms, index] = sort([m, m_neighbour]); + orders = [obj.order, neighbour_scheme.order]; + orders = orders(index); + + switch obj.interpolation_type + case 'MC' + interpOpSet = sbp.InterpMC(ms(1),ms(2),orders(1),orders(2)); + if grid_ratio < 1 + I_neighbour2local_us = interpOpSet.IF2C; + I_neighbour2local_ds = interpOpSet.IF2C; + I_local2neighbour_us = interpOpSet.IC2F; + I_local2neighbour_ds = interpOpSet.IC2F; + elseif grid_ratio > 1 + I_neighbour2local_us = interpOpSet.IC2F; + I_neighbour2local_ds = interpOpSet.IC2F; + I_local2neighbour_us = interpOpSet.IF2C; + I_local2neighbour_ds = interpOpSet.IF2C; + end + case 'AWW' + %String 'C2F' indicates that ICF2 is more accurate. + interpOpSetF2C = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'F2C'); + interpOpSetC2F = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'C2F'); + if grid_ratio < 1 + % Local is coarser than neighbour + I_neighbour2local_us = interpOpSetC2F.IF2C; + I_neighbour2local_ds = interpOpSetF2C.IF2C; + I_local2neighbour_us = interpOpSetC2F.IC2F; + I_local2neighbour_ds = interpOpSetF2C.IC2F; + elseif grid_ratio > 1 + % Local is finer than neighbour + I_neighbour2local_us = interpOpSetF2C.IC2F; + I_neighbour2local_ds = interpOpSetC2F.IC2F; + I_local2neighbour_us = interpOpSetF2C.IF2C; + I_local2neighbour_ds = interpOpSetC2F.IF2C; + end + otherwise + error(['Interpolation type ' obj.interpolation_type ... + ' is not available.' ]); + end + + else + % No interpolation required + I_neighbour2local_us = speye(m,m); + I_neighbour2local_ds = speye(m,m); + end + + int_damp_us = obj.interpolation_damping{1}; + int_damp_ds = obj.interpolation_damping{2}; + + I = speye(m,m); + I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; + I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds; + + + switch boundary + case {'w','W','west','West'} + tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; + closure = obj.Hi*tau*obj.e_w'; + penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; + + beta = int_damp_ds*obj.a{1}... + *obj.e_w*obj.H_y; + closure = closure + obj.Hi*beta*(I_back_forth_ds - I)*obj.e_w'; + case {'e','E','east','East'} + tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; + closure = obj.Hi*tau*obj.e_e'; + penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; + + beta = int_damp_us*obj.a{1}... + *obj.e_e*obj.H_y; + closure = closure + obj.Hi*beta*(I_back_forth_us - I)*obj.e_e'; + case {'s','S','south','South'} + tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; + closure = obj.Hi*tau*obj.e_s'; + penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; + + beta = int_damp_ds*obj.a{2}... + *obj.e_s*obj.H_x; + closure = closure + obj.Hi*beta*(I_back_forth_ds - I)*obj.e_s'; + case {'n','N','north','North'} + tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; + closure = obj.Hi*tau*obj.e_n'; + penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; + + beta = int_damp_us*obj.a{2}... + *obj.e_n*obj.H_x; + closure = closure + obj.Hi*beta*(I_back_forth_us - I)*obj.e_n'; + end + + + end + + function N = size(obj) + N = obj.m; + end + + end + + methods(Static) + % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file