Mercurial > repos > public > sbplib
comparison +scheme/Utux2D.m @ 756:f891758ad7a4 feature/d1_staggered
Merge with feature/utux2d.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Sat, 16 Jun 2018 14:30:45 -0700 |
parents | f4595f14d696 |
children | 459eeb99130f |
comparison
equal
deleted
inserted
replaced
755:14f0058356f2 | 756:f891758ad7a4 |
---|---|
1 classdef Utux2D < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 h % Grid spacing | |
5 grid % Grid | |
6 order % Order accuracy for the approximation | |
7 v0 % Initial data | |
8 | |
9 a % Wave speed a = [a1, a2]; | |
10 % Can either be a constant vector or a cell array of function handles. | |
11 | |
12 H % Discrete norm | |
13 H_x, H_y % Norms in the x and y directions | |
14 Hi, Hx, Hy, Hxi, Hyi % Kroneckered norms | |
15 | |
16 % Derivatives | |
17 Dx, Dy | |
18 | |
19 % Boundary operators | |
20 e_w, e_e, e_s, e_n | |
21 | |
22 D % Total discrete operator | |
23 | |
24 % String, type of interface coupling | |
25 % Default: 'upwind' | |
26 % Other: 'centered' | |
27 coupling_type | |
28 | |
29 % String, type of interpolation operators | |
30 % Default: 'AWW' (Almquist Wang Werpers) | |
31 % Other: 'MC' (Mattsson Carpenter) | |
32 interpolation_type | |
33 | |
34 | |
35 % Cell array, damping on upwstream and downstream sides. | |
36 interpolation_damping | |
37 | |
38 end | |
39 | |
40 | |
41 methods | |
42 function obj = Utux2D(g ,order, opSet, a, coupling_type, interpolation_type, interpolation_damping) | |
43 | |
44 default_arg('interpolation_damping',{0,0}); | |
45 default_arg('interpolation_type','AWW'); | |
46 default_arg('coupling_type','upwind'); | |
47 default_arg('a',1/sqrt(2)*[1, 1]); | |
48 default_arg('opSet',@sbp.D2Standard); | |
49 | |
50 assert(isa(g, 'grid.Cartesian')) | |
51 if iscell(a) | |
52 a1 = grid.evalOn(g, a{1}); | |
53 a2 = grid.evalOn(g, a{2}); | |
54 a = {spdiag(a1), spdiag(a2)}; | |
55 else | |
56 a = {a(1), a(2)}; | |
57 end | |
58 | |
59 m = g.size(); | |
60 m_x = m(1); | |
61 m_y = m(2); | |
62 m_tot = g.N(); | |
63 | |
64 xlim = {g.x{1}(1), g.x{1}(end)}; | |
65 ylim = {g.x{2}(1), g.x{2}(end)}; | |
66 obj.grid = g; | |
67 | |
68 % Operator sets | |
69 ops_x = opSet(m_x, xlim, order); | |
70 ops_y = opSet(m_y, ylim, order); | |
71 Ix = speye(m_x); | |
72 Iy = speye(m_y); | |
73 | |
74 % Norms | |
75 Hx = ops_x.H; | |
76 Hy = ops_y.H; | |
77 Hxi = ops_x.HI; | |
78 Hyi = ops_y.HI; | |
79 | |
80 obj.H_x = Hx; | |
81 obj.H_y = Hy; | |
82 obj.H = kron(Hx,Hy); | |
83 obj.Hi = kron(Hxi,Hyi); | |
84 obj.Hx = kron(Hx,Iy); | |
85 obj.Hy = kron(Ix,Hy); | |
86 obj.Hxi = kron(Hxi,Iy); | |
87 obj.Hyi = kron(Ix,Hyi); | |
88 | |
89 % Derivatives | |
90 Dx = ops_x.D1; | |
91 Dy = ops_y.D1; | |
92 obj.Dx = kron(Dx,Iy); | |
93 obj.Dy = kron(Ix,Dy); | |
94 | |
95 % Boundary operators | |
96 obj.e_w = kr(ops_x.e_l, Iy); | |
97 obj.e_e = kr(ops_x.e_r, Iy); | |
98 obj.e_s = kr(Ix, ops_y.e_l); | |
99 obj.e_n = kr(Ix, ops_y.e_r); | |
100 | |
101 obj.m = m; | |
102 obj.h = [ops_x.h ops_y.h]; | |
103 obj.order = order; | |
104 obj.a = a; | |
105 obj.coupling_type = coupling_type; | |
106 obj.interpolation_type = interpolation_type; | |
107 obj.interpolation_damping = interpolation_damping; | |
108 obj.D = -(a{1}*obj.Dx + a{2}*obj.Dy); | |
109 | |
110 end | |
111 % Closure functions return the opertors applied to the own domain to close the boundary | |
112 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
113 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
114 % type is a string specifying the type of boundary condition if there are several. | |
115 % data is a function returning the data that should be applied at the boundary. | |
116 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
117 % neighbour_boundary is a string specifying which boundary to interface to. | |
118 function [closure, penalty] = boundary_condition(obj,boundary,type) | |
119 default_arg('type','dirichlet'); | |
120 | |
121 sigma = -1; % Scalar penalty parameter | |
122 switch boundary | |
123 case {'w','W','west','West'} | |
124 tau = sigma*obj.a{1}*obj.e_w*obj.H_y; | |
125 closure = obj.Hi*tau*obj.e_w'; | |
126 | |
127 case {'s','S','south','South'} | |
128 tau = sigma*obj.a{2}*obj.e_s*obj.H_x; | |
129 closure = obj.Hi*tau*obj.e_s'; | |
130 end | |
131 penalty = -obj.Hi*tau; | |
132 | |
133 end | |
134 | |
135 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
136 | |
137 % Get neighbour boundary operator | |
138 switch neighbour_boundary | |
139 case {'e','E','east','East'} | |
140 e_neighbour = neighbour_scheme.e_e; | |
141 m_neighbour = neighbour_scheme.m(2); | |
142 case {'w','W','west','West'} | |
143 e_neighbour = neighbour_scheme.e_w; | |
144 m_neighbour = neighbour_scheme.m(2); | |
145 case {'n','N','north','North'} | |
146 e_neighbour = neighbour_scheme.e_n; | |
147 m_neighbour = neighbour_scheme.m(1); | |
148 case {'s','S','south','South'} | |
149 e_neighbour = neighbour_scheme.e_s; | |
150 m_neighbour = neighbour_scheme.m(1); | |
151 end | |
152 | |
153 switch obj.coupling_type | |
154 | |
155 % Upwind coupling (energy dissipation) | |
156 case 'upwind' | |
157 sigma_ds = -1; %"Downstream" penalty | |
158 sigma_us = 0; %"Upstream" penalty | |
159 | |
160 % Energy-preserving coupling (no energy dissipation) | |
161 case 'centered' | |
162 sigma_ds = -1/2; %"Downstream" penalty | |
163 sigma_us = 1/2; %"Upstream" penalty | |
164 | |
165 otherwise | |
166 error(['Interface coupling type ' coupling_type ' is not available.']) | |
167 end | |
168 | |
169 % Check grid ratio for interpolation | |
170 switch boundary | |
171 case {'w','W','west','West','e','E','east','East'} | |
172 m = obj.m(2); | |
173 case {'s','S','south','South','n','N','north','North'} | |
174 m = obj.m(1); | |
175 end | |
176 grid_ratio = m/m_neighbour; | |
177 if grid_ratio ~= 1 | |
178 | |
179 [ms, index] = sort([m, m_neighbour]); | |
180 orders = [obj.order, neighbour_scheme.order]; | |
181 orders = orders(index); | |
182 | |
183 switch obj.interpolation_type | |
184 case 'MC' | |
185 interpOpSet = sbp.InterpMC(ms(1),ms(2),orders(1),orders(2)); | |
186 if grid_ratio < 1 | |
187 I_neighbour2local_us = interpOpSet.IF2C; | |
188 I_neighbour2local_ds = interpOpSet.IF2C; | |
189 I_local2neighbour_us = interpOpSet.IC2F; | |
190 I_local2neighbour_ds = interpOpSet.IC2F; | |
191 elseif grid_ratio > 1 | |
192 I_neighbour2local_us = interpOpSet.IC2F; | |
193 I_neighbour2local_ds = interpOpSet.IC2F; | |
194 I_local2neighbour_us = interpOpSet.IF2C; | |
195 I_local2neighbour_ds = interpOpSet.IF2C; | |
196 end | |
197 case 'AWW' | |
198 %String 'C2F' indicates that ICF2 is more accurate. | |
199 interpOpSetF2C = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'F2C'); | |
200 interpOpSetC2F = sbp.InterpAWW(ms(1),ms(2),orders(1),orders(2),'C2F'); | |
201 if grid_ratio < 1 | |
202 % Local is coarser than neighbour | |
203 I_neighbour2local_us = interpOpSetC2F.IF2C; | |
204 I_neighbour2local_ds = interpOpSetF2C.IF2C; | |
205 I_local2neighbour_us = interpOpSetC2F.IC2F; | |
206 I_local2neighbour_ds = interpOpSetF2C.IC2F; | |
207 elseif grid_ratio > 1 | |
208 % Local is finer than neighbour | |
209 I_neighbour2local_us = interpOpSetF2C.IC2F; | |
210 I_neighbour2local_ds = interpOpSetC2F.IC2F; | |
211 I_local2neighbour_us = interpOpSetF2C.IF2C; | |
212 I_local2neighbour_ds = interpOpSetC2F.IF2C; | |
213 end | |
214 otherwise | |
215 error(['Interpolation type ' obj.interpolation_type ... | |
216 ' is not available.' ]); | |
217 end | |
218 | |
219 else | |
220 % No interpolation required | |
221 I_neighbour2local_us = speye(m,m); | |
222 I_neighbour2local_ds = speye(m,m); | |
223 end | |
224 | |
225 int_damp_us = obj.interpolation_damping{1}; | |
226 int_damp_ds = obj.interpolation_damping{2}; | |
227 | |
228 I = speye(m,m); | |
229 I_back_forth_us = I_neighbour2local_us*I_local2neighbour_us; | |
230 I_back_forth_ds = I_neighbour2local_ds*I_local2neighbour_ds; | |
231 | |
232 | |
233 switch boundary | |
234 case {'w','W','west','West'} | |
235 tau = sigma_ds*obj.a{1}*obj.e_w*obj.H_y; | |
236 closure = obj.Hi*tau*obj.e_w'; | |
237 penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; | |
238 | |
239 beta = int_damp_ds*obj.a{1}... | |
240 *obj.e_w*obj.H_y; | |
241 closure = closure + obj.Hi*beta*(I_back_forth_ds - I)*obj.e_w'; | |
242 case {'e','E','east','East'} | |
243 tau = sigma_us*obj.a{1}*obj.e_e*obj.H_y; | |
244 closure = obj.Hi*tau*obj.e_e'; | |
245 penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; | |
246 | |
247 beta = int_damp_us*obj.a{1}... | |
248 *obj.e_e*obj.H_y; | |
249 closure = closure + obj.Hi*beta*(I_back_forth_us - I)*obj.e_e'; | |
250 case {'s','S','south','South'} | |
251 tau = sigma_ds*obj.a{2}*obj.e_s*obj.H_x; | |
252 closure = obj.Hi*tau*obj.e_s'; | |
253 penalty = -obj.Hi*tau*I_neighbour2local_ds*e_neighbour'; | |
254 | |
255 beta = int_damp_ds*obj.a{2}... | |
256 *obj.e_s*obj.H_x; | |
257 closure = closure + obj.Hi*beta*(I_back_forth_ds - I)*obj.e_s'; | |
258 case {'n','N','north','North'} | |
259 tau = sigma_us*obj.a{2}*obj.e_n*obj.H_x; | |
260 closure = obj.Hi*tau*obj.e_n'; | |
261 penalty = -obj.Hi*tau*I_neighbour2local_us*e_neighbour'; | |
262 | |
263 beta = int_damp_us*obj.a{2}... | |
264 *obj.e_n*obj.H_x; | |
265 closure = closure + obj.Hi*beta*(I_back_forth_us - I)*obj.e_n'; | |
266 end | |
267 | |
268 | |
269 end | |
270 | |
271 function N = size(obj) | |
272 N = obj.m; | |
273 end | |
274 | |
275 end | |
276 | |
277 methods(Static) | |
278 % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u | |
279 % and bound_v of scheme schm_v. | |
280 % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') | |
281 function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) | |
282 [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); | |
283 [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); | |
284 end | |
285 end | |
286 end |