Mercurial > repos > public > sbplib
diff +sbp/+implementations/d4_4.m @ 267:f7ac3cd6eeaa operator_remake
Sparsified all implementation files, removed all matlab warnings, fixed small bugs on minimum grid points.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 14:53:41 +0200 |
parents | bfa130b7abf6 |
children |
line wrap: on
line diff
--- a/+sbp/+implementations/d4_4.m Fri Sep 09 11:03:13 2016 +0200 +++ b/+sbp/+implementations/d4_4.m Fri Sep 09 14:53:41 2016 +0200 @@ -33,55 +33,58 @@ error(['Operator requires at least ' num2str(2*BP) ' grid points']); end - H=diag(ones(m,1),0); + H=speye(m,m); H_U=[0.35809e5 / 0.100800e6 0 0 0 0 0; 0 0.13297e5 / 0.11200e5 0 0 0 0; 0 0 0.5701e4 / 0.5600e4 0 0 0; 0 0 0 0.45109e5 / 0.50400e5 0 0; 0 0 0 0 0.35191e5 / 0.33600e5 0; 0 0 0 0 0 0.33503e5 / 0.33600e5;]; H(1:6,1:6)=H_U; - H(m-5:m,m-5:m)=fliplr(flipud(H_U)); + H(m-5:m,m-5:m)=rot90(H_U,2); H=H*h; HI=inv(H); % First derivative SBP operator, 1st order accurate at first 6 boundary points - q2=-1/12;q1=8/12; - Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); +% q2=-1/12;q1=8/12; +% Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); + e=ones(m,1); + Q=spdiags([e -8*e 0*e 8*e -e], -2:2, m, m)/12; %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); Q_U = [0 0.526249e6 / 0.907200e6 -0.10819e5 / 0.777600e6 -0.50767e5 / 0.907200e6 -0.631e3 / 0.28800e5 0.91e2 / 0.7776e4; -0.526249e6 / 0.907200e6 0 0.1421209e7 / 0.2721600e7 0.16657e5 / 0.201600e6 -0.8467e4 / 0.453600e6 -0.33059e5 / 0.5443200e7; 0.10819e5 / 0.777600e6 -0.1421209e7 / 0.2721600e7 0 0.631187e6 / 0.1360800e7 0.400139e6 / 0.5443200e7 -0.8789e4 / 0.302400e6; 0.50767e5 / 0.907200e6 -0.16657e5 / 0.201600e6 -0.631187e6 / 0.1360800e7 0 0.496403e6 / 0.907200e6 -0.308533e6 / 0.5443200e7; 0.631e3 / 0.28800e5 0.8467e4 / 0.453600e6 -0.400139e6 / 0.5443200e7 -0.496403e6 / 0.907200e6 0 0.1805647e7 / 0.2721600e7; -0.91e2 / 0.7776e4 0.33059e5 / 0.5443200e7 0.8789e4 / 0.302400e6 0.308533e6 / 0.5443200e7 -0.1805647e7 / 0.2721600e7 0;]; Q(1:6,1:6)=Q_U; - Q(m-5:m,m-5:m)=flipud( fliplr( -Q_U ) ); + Q(m-5:m,m-5:m)=rot90( -Q_U ,2 ); - e_1=zeros(m,1);e_1(1)=1; - e_m=zeros(m,1);e_m(m)=1; + e_1=sparse(m,1);e_1(1)=1; + e_m=sparse(m,1);e_m(m)=1; - D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; + D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Second derivative, 1st order accurate at first 6 boundary points - m2=1/12;m1=-16/12;m0=30/12; - M=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); +% m2=1/12;m1=-16/12;m0=30/12; +% M=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); %M=(1/12*diag(ones(m-2,1),2)-16/12*diag(ones(m-1,1),1)-16/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)+30/12*diag(ones(m,1),0)); + M=-spdiags([-e 16*e -30*e 16*e -e], -2:2, m, m)/12; M_U=[0.2386127e7 / 0.2177280e7 -0.515449e6 / 0.453600e6 -0.10781e5 / 0.777600e6 0.61567e5 / 0.1360800e7 0.6817e4 / 0.403200e6 -0.1069e4 / 0.136080e6; -0.515449e6 / 0.453600e6 0.4756039e7 / 0.2177280e7 -0.1270009e7 / 0.1360800e7 -0.3751e4 / 0.28800e5 0.3067e4 / 0.680400e6 0.119459e6 / 0.10886400e8; -0.10781e5 / 0.777600e6 -0.1270009e7 / 0.1360800e7 0.111623e6 / 0.60480e5 -0.555587e6 / 0.680400e6 -0.551339e6 / 0.5443200e7 0.8789e4 / 0.453600e6; 0.61567e5 / 0.1360800e7 -0.3751e4 / 0.28800e5 -0.555587e6 / 0.680400e6 0.1025327e7 / 0.544320e6 -0.464003e6 / 0.453600e6 0.222133e6 / 0.5443200e7; 0.6817e4 / 0.403200e6 0.3067e4 / 0.680400e6 -0.551339e6 / 0.5443200e7 -0.464003e6 / 0.453600e6 0.5074159e7 / 0.2177280e7 -0.1784047e7 / 0.1360800e7; -0.1069e4 / 0.136080e6 0.119459e6 / 0.10886400e8 0.8789e4 / 0.453600e6 0.222133e6 / 0.5443200e7 -0.1784047e7 / 0.1360800e7 0.1812749e7 / 0.725760e6;]; M(1:6,1:6)=M_U; - M(m-5:m,m-5:m)=flipud( fliplr( M_U ) ); + M(m-5:m,m-5:m)=rot90( M_U ,2 ); M=M/h; S_U=[-0.11e2 / 0.6e1 3 -0.3e1 / 0.2e1 0.1e1 / 0.3e1;]/h; - S_1=zeros(1,m); + S_1=sparse(1,m); S_1(1:4)=S_U; - S_m=zeros(1,m); + S_m=sparse(1,m); S_m(m-3:m)=fliplr(-S_U); - D2=HI*(-M-e_1*S_1+e_m*S_m); + D2=H\(-M-e_1*S_1+e_m*S_m); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -91,7 +94,10 @@ % Third derivative, 1st order accurate at first 6 boundary points q3=-1/8;q2=1;q1=-13/8; - Q3=q3*(diag(ones(m-3,1),3)-diag(ones(m-3,1),-3))+q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); +% Q3=q3*(diag(ones(m-3,1),3)-diag(ones(m-3,1),-3))+q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); + diags = -3:3; + stencil = [-q3,-q2,-q1,0,q1,q2,q3]; + Q3 = stripeMatrix(stencil, diags, m); %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); @@ -99,26 +105,30 @@ Q3_U = [0 -0.88471e5 / 0.67200e5 0.58139e5 / 0.33600e5 -0.1167e4 / 0.2800e4 -0.89e2 / 0.11200e5 0.7e1 / 0.640e3; 0.88471e5 / 0.67200e5 0 -0.43723e5 / 0.16800e5 0.46783e5 / 0.33600e5 -0.191e3 / 0.3200e4 -0.1567e4 / 0.33600e5; -0.58139e5 / 0.33600e5 0.43723e5 / 0.16800e5 0 -0.4049e4 / 0.2400e4 0.29083e5 / 0.33600e5 -0.71e2 / 0.1400e4; 0.1167e4 / 0.2800e4 -0.46783e5 / 0.33600e5 0.4049e4 / 0.2400e4 0 -0.8591e4 / 0.5600e4 0.10613e5 / 0.11200e5; 0.89e2 / 0.11200e5 0.191e3 / 0.3200e4 -0.29083e5 / 0.33600e5 0.8591e4 / 0.5600e4 0 -0.108271e6 / 0.67200e5; -0.7e1 / 0.640e3 0.1567e4 / 0.33600e5 0.71e2 / 0.1400e4 -0.10613e5 / 0.11200e5 0.108271e6 / 0.67200e5 0;]; Q3(1:6,1:6)=Q3_U; - Q3(m-5:m,m-5:m)=flipud( fliplr( -Q3_U ) ); + Q3(m-5:m,m-5:m)=rot90( -Q3_U ,2 ); Q3=Q3/h^2; S2_U=[2 -5 4 -1;]/h^2; - S2_1=zeros(1,m); + S2_1=sparse(1,m); S2_1(1:4)=S2_U; - S2_m=zeros(1,m); + S2_m=sparse(1,m); S2_m(m-3:m)=fliplr(S2_U); - D3=HI*(Q3 - e_1*S2_1 + e_m*S2_m +1/2*S_1'*S_1 -1/2*S_m'*S_m ) ; + D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ; % Fourth derivative, 0th order accurate at first 6 boundary points (still % yield 4th order convergence if stable: for example u_tt=-u_xxxx m3=-1/6;m2=2;m1=-13/2;m0=28/3; - M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); +% M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); + diags = -3:3; + left_stencil = [m3,m2,m1]; + stencil = [left_stencil,m0,fliplr(left_stencil)]; + M4 = stripeMatrix(stencil, diags, m); %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); @@ -126,16 +136,16 @@ M4(1:6,1:6)=M4_U; - M4(m-5:m,m-5:m)=flipud( fliplr( M4_U ) ); + M4(m-5:m,m-5:m)=rot90( M4_U ,2 ); M4=M4/h^3; S3_U=[-1 3 -3 1;]/h^3; - S3_1=zeros(1,m); + S3_1=sparse(1,m); S3_1(1:4)=S3_U; - S3_m=zeros(1,m); + S3_m=sparse(1,m); S3_m(m-3:m)=fliplr(-S3_U); - D4=HI*(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); + D4=H\(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); % L=h*(m-1);