Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_4.m @ 267:f7ac3cd6eeaa operator_remake
Sparsified all implementation files, removed all matlab warnings, fixed small bugs on minimum grid points.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 14:53:41 +0200 |
parents | bfa130b7abf6 |
children |
comparison
equal
deleted
inserted
replaced
266:bfa130b7abf6 | 267:f7ac3cd6eeaa |
---|---|
31 BP = 6; | 31 BP = 6; |
32 if(m<2*BP) | 32 if(m<2*BP) |
33 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | 33 error(['Operator requires at least ' num2str(2*BP) ' grid points']); |
34 end | 34 end |
35 | 35 |
36 H=diag(ones(m,1),0); | 36 H=speye(m,m); |
37 H_U=[0.35809e5 / 0.100800e6 0 0 0 0 0; 0 0.13297e5 / 0.11200e5 0 0 0 0; 0 0 0.5701e4 / 0.5600e4 0 0 0; 0 0 0 0.45109e5 / 0.50400e5 0 0; 0 0 0 0 0.35191e5 / 0.33600e5 0; 0 0 0 0 0 0.33503e5 / 0.33600e5;]; | 37 H_U=[0.35809e5 / 0.100800e6 0 0 0 0 0; 0 0.13297e5 / 0.11200e5 0 0 0 0; 0 0 0.5701e4 / 0.5600e4 0 0 0; 0 0 0 0.45109e5 / 0.50400e5 0 0; 0 0 0 0 0.35191e5 / 0.33600e5 0; 0 0 0 0 0 0.33503e5 / 0.33600e5;]; |
38 | 38 |
39 H(1:6,1:6)=H_U; | 39 H(1:6,1:6)=H_U; |
40 H(m-5:m,m-5:m)=fliplr(flipud(H_U)); | 40 H(m-5:m,m-5:m)=rot90(H_U,2); |
41 H=H*h; | 41 H=H*h; |
42 HI=inv(H); | 42 HI=inv(H); |
43 | 43 |
44 | 44 |
45 % First derivative SBP operator, 1st order accurate at first 6 boundary points | 45 % First derivative SBP operator, 1st order accurate at first 6 boundary points |
46 | 46 |
47 q2=-1/12;q1=8/12; | 47 % q2=-1/12;q1=8/12; |
48 Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | 48 % Q=q2*(diag(ones(m-2,1),2) - diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); |
49 e=ones(m,1); | |
50 Q=spdiags([e -8*e 0*e 8*e -e], -2:2, m, m)/12; | |
49 | 51 |
50 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | 52 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); |
51 | 53 |
52 Q_U = [0 0.526249e6 / 0.907200e6 -0.10819e5 / 0.777600e6 -0.50767e5 / 0.907200e6 -0.631e3 / 0.28800e5 0.91e2 / 0.7776e4; -0.526249e6 / 0.907200e6 0 0.1421209e7 / 0.2721600e7 0.16657e5 / 0.201600e6 -0.8467e4 / 0.453600e6 -0.33059e5 / 0.5443200e7; 0.10819e5 / 0.777600e6 -0.1421209e7 / 0.2721600e7 0 0.631187e6 / 0.1360800e7 0.400139e6 / 0.5443200e7 -0.8789e4 / 0.302400e6; 0.50767e5 / 0.907200e6 -0.16657e5 / 0.201600e6 -0.631187e6 / 0.1360800e7 0 0.496403e6 / 0.907200e6 -0.308533e6 / 0.5443200e7; 0.631e3 / 0.28800e5 0.8467e4 / 0.453600e6 -0.400139e6 / 0.5443200e7 -0.496403e6 / 0.907200e6 0 0.1805647e7 / 0.2721600e7; -0.91e2 / 0.7776e4 0.33059e5 / 0.5443200e7 0.8789e4 / 0.302400e6 0.308533e6 / 0.5443200e7 -0.1805647e7 / 0.2721600e7 0;]; | 54 Q_U = [0 0.526249e6 / 0.907200e6 -0.10819e5 / 0.777600e6 -0.50767e5 / 0.907200e6 -0.631e3 / 0.28800e5 0.91e2 / 0.7776e4; -0.526249e6 / 0.907200e6 0 0.1421209e7 / 0.2721600e7 0.16657e5 / 0.201600e6 -0.8467e4 / 0.453600e6 -0.33059e5 / 0.5443200e7; 0.10819e5 / 0.777600e6 -0.1421209e7 / 0.2721600e7 0 0.631187e6 / 0.1360800e7 0.400139e6 / 0.5443200e7 -0.8789e4 / 0.302400e6; 0.50767e5 / 0.907200e6 -0.16657e5 / 0.201600e6 -0.631187e6 / 0.1360800e7 0 0.496403e6 / 0.907200e6 -0.308533e6 / 0.5443200e7; 0.631e3 / 0.28800e5 0.8467e4 / 0.453600e6 -0.400139e6 / 0.5443200e7 -0.496403e6 / 0.907200e6 0 0.1805647e7 / 0.2721600e7; -0.91e2 / 0.7776e4 0.33059e5 / 0.5443200e7 0.8789e4 / 0.302400e6 0.308533e6 / 0.5443200e7 -0.1805647e7 / 0.2721600e7 0;]; |
53 Q(1:6,1:6)=Q_U; | 55 Q(1:6,1:6)=Q_U; |
54 Q(m-5:m,m-5:m)=flipud( fliplr( -Q_U ) ); | 56 Q(m-5:m,m-5:m)=rot90( -Q_U ,2 ); |
55 | 57 |
56 e_1=zeros(m,1);e_1(1)=1; | 58 e_1=sparse(m,1);e_1(1)=1; |
57 e_m=zeros(m,1);e_m(m)=1; | 59 e_m=sparse(m,1);e_m(m)=1; |
58 | 60 |
59 | 61 |
60 D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; | 62 D1=H\(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; |
61 | 63 |
62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
63 | 65 |
64 | 66 |
65 | 67 |
66 % Second derivative, 1st order accurate at first 6 boundary points | 68 % Second derivative, 1st order accurate at first 6 boundary points |
67 m2=1/12;m1=-16/12;m0=30/12; | 69 % m2=1/12;m1=-16/12;m0=30/12; |
68 M=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | 70 % M=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); |
69 %M=(1/12*diag(ones(m-2,1),2)-16/12*diag(ones(m-1,1),1)-16/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)+30/12*diag(ones(m,1),0)); | 71 %M=(1/12*diag(ones(m-2,1),2)-16/12*diag(ones(m-1,1),1)-16/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)+30/12*diag(ones(m,1),0)); |
72 M=-spdiags([-e 16*e -30*e 16*e -e], -2:2, m, m)/12; | |
70 M_U=[0.2386127e7 / 0.2177280e7 -0.515449e6 / 0.453600e6 -0.10781e5 / 0.777600e6 0.61567e5 / 0.1360800e7 0.6817e4 / 0.403200e6 -0.1069e4 / 0.136080e6; -0.515449e6 / 0.453600e6 0.4756039e7 / 0.2177280e7 -0.1270009e7 / 0.1360800e7 -0.3751e4 / 0.28800e5 0.3067e4 / 0.680400e6 0.119459e6 / 0.10886400e8; -0.10781e5 / 0.777600e6 -0.1270009e7 / 0.1360800e7 0.111623e6 / 0.60480e5 -0.555587e6 / 0.680400e6 -0.551339e6 / 0.5443200e7 0.8789e4 / 0.453600e6; 0.61567e5 / 0.1360800e7 -0.3751e4 / 0.28800e5 -0.555587e6 / 0.680400e6 0.1025327e7 / 0.544320e6 -0.464003e6 / 0.453600e6 0.222133e6 / 0.5443200e7; 0.6817e4 / 0.403200e6 0.3067e4 / 0.680400e6 -0.551339e6 / 0.5443200e7 -0.464003e6 / 0.453600e6 0.5074159e7 / 0.2177280e7 -0.1784047e7 / 0.1360800e7; -0.1069e4 / 0.136080e6 0.119459e6 / 0.10886400e8 0.8789e4 / 0.453600e6 0.222133e6 / 0.5443200e7 -0.1784047e7 / 0.1360800e7 0.1812749e7 / 0.725760e6;]; | 73 M_U=[0.2386127e7 / 0.2177280e7 -0.515449e6 / 0.453600e6 -0.10781e5 / 0.777600e6 0.61567e5 / 0.1360800e7 0.6817e4 / 0.403200e6 -0.1069e4 / 0.136080e6; -0.515449e6 / 0.453600e6 0.4756039e7 / 0.2177280e7 -0.1270009e7 / 0.1360800e7 -0.3751e4 / 0.28800e5 0.3067e4 / 0.680400e6 0.119459e6 / 0.10886400e8; -0.10781e5 / 0.777600e6 -0.1270009e7 / 0.1360800e7 0.111623e6 / 0.60480e5 -0.555587e6 / 0.680400e6 -0.551339e6 / 0.5443200e7 0.8789e4 / 0.453600e6; 0.61567e5 / 0.1360800e7 -0.3751e4 / 0.28800e5 -0.555587e6 / 0.680400e6 0.1025327e7 / 0.544320e6 -0.464003e6 / 0.453600e6 0.222133e6 / 0.5443200e7; 0.6817e4 / 0.403200e6 0.3067e4 / 0.680400e6 -0.551339e6 / 0.5443200e7 -0.464003e6 / 0.453600e6 0.5074159e7 / 0.2177280e7 -0.1784047e7 / 0.1360800e7; -0.1069e4 / 0.136080e6 0.119459e6 / 0.10886400e8 0.8789e4 / 0.453600e6 0.222133e6 / 0.5443200e7 -0.1784047e7 / 0.1360800e7 0.1812749e7 / 0.725760e6;]; |
71 | 74 |
72 M(1:6,1:6)=M_U; | 75 M(1:6,1:6)=M_U; |
73 | 76 |
74 M(m-5:m,m-5:m)=flipud( fliplr( M_U ) ); | 77 M(m-5:m,m-5:m)=rot90( M_U ,2 ); |
75 M=M/h; | 78 M=M/h; |
76 | 79 |
77 S_U=[-0.11e2 / 0.6e1 3 -0.3e1 / 0.2e1 0.1e1 / 0.3e1;]/h; | 80 S_U=[-0.11e2 / 0.6e1 3 -0.3e1 / 0.2e1 0.1e1 / 0.3e1;]/h; |
78 S_1=zeros(1,m); | 81 S_1=sparse(1,m); |
79 S_1(1:4)=S_U; | 82 S_1(1:4)=S_U; |
80 S_m=zeros(1,m); | 83 S_m=sparse(1,m); |
81 | 84 |
82 S_m(m-3:m)=fliplr(-S_U); | 85 S_m(m-3:m)=fliplr(-S_U); |
83 | 86 |
84 D2=HI*(-M-e_1*S_1+e_m*S_m); | 87 D2=H\(-M-e_1*S_1+e_m*S_m); |
85 | 88 |
86 | 89 |
87 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
88 | 91 |
89 | 92 |
90 | 93 |
91 % Third derivative, 1st order accurate at first 6 boundary points | 94 % Third derivative, 1st order accurate at first 6 boundary points |
92 | 95 |
93 q3=-1/8;q2=1;q1=-13/8; | 96 q3=-1/8;q2=1;q1=-13/8; |
94 Q3=q3*(diag(ones(m-3,1),3)-diag(ones(m-3,1),-3))+q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | 97 % Q3=q3*(diag(ones(m-3,1),3)-diag(ones(m-3,1),-3))+q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); |
98 diags = -3:3; | |
99 stencil = [-q3,-q2,-q1,0,q1,q2,q3]; | |
100 Q3 = stripeMatrix(stencil, diags, m); | |
95 | 101 |
96 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | 102 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); |
97 | 103 |
98 | 104 |
99 Q3_U = [0 -0.88471e5 / 0.67200e5 0.58139e5 / 0.33600e5 -0.1167e4 / 0.2800e4 -0.89e2 / 0.11200e5 0.7e1 / 0.640e3; 0.88471e5 / 0.67200e5 0 -0.43723e5 / 0.16800e5 0.46783e5 / 0.33600e5 -0.191e3 / 0.3200e4 -0.1567e4 / 0.33600e5; -0.58139e5 / 0.33600e5 0.43723e5 / 0.16800e5 0 -0.4049e4 / 0.2400e4 0.29083e5 / 0.33600e5 -0.71e2 / 0.1400e4; 0.1167e4 / 0.2800e4 -0.46783e5 / 0.33600e5 0.4049e4 / 0.2400e4 0 -0.8591e4 / 0.5600e4 0.10613e5 / 0.11200e5; 0.89e2 / 0.11200e5 0.191e3 / 0.3200e4 -0.29083e5 / 0.33600e5 0.8591e4 / 0.5600e4 0 -0.108271e6 / 0.67200e5; -0.7e1 / 0.640e3 0.1567e4 / 0.33600e5 0.71e2 / 0.1400e4 -0.10613e5 / 0.11200e5 0.108271e6 / 0.67200e5 0;]; | 105 Q3_U = [0 -0.88471e5 / 0.67200e5 0.58139e5 / 0.33600e5 -0.1167e4 / 0.2800e4 -0.89e2 / 0.11200e5 0.7e1 / 0.640e3; 0.88471e5 / 0.67200e5 0 -0.43723e5 / 0.16800e5 0.46783e5 / 0.33600e5 -0.191e3 / 0.3200e4 -0.1567e4 / 0.33600e5; -0.58139e5 / 0.33600e5 0.43723e5 / 0.16800e5 0 -0.4049e4 / 0.2400e4 0.29083e5 / 0.33600e5 -0.71e2 / 0.1400e4; 0.1167e4 / 0.2800e4 -0.46783e5 / 0.33600e5 0.4049e4 / 0.2400e4 0 -0.8591e4 / 0.5600e4 0.10613e5 / 0.11200e5; 0.89e2 / 0.11200e5 0.191e3 / 0.3200e4 -0.29083e5 / 0.33600e5 0.8591e4 / 0.5600e4 0 -0.108271e6 / 0.67200e5; -0.7e1 / 0.640e3 0.1567e4 / 0.33600e5 0.71e2 / 0.1400e4 -0.10613e5 / 0.11200e5 0.108271e6 / 0.67200e5 0;]; |
100 | 106 |
101 Q3(1:6,1:6)=Q3_U; | 107 Q3(1:6,1:6)=Q3_U; |
102 Q3(m-5:m,m-5:m)=flipud( fliplr( -Q3_U ) ); | 108 Q3(m-5:m,m-5:m)=rot90( -Q3_U ,2 ); |
103 Q3=Q3/h^2; | 109 Q3=Q3/h^2; |
104 | 110 |
105 | 111 |
106 | 112 |
107 S2_U=[2 -5 4 -1;]/h^2; | 113 S2_U=[2 -5 4 -1;]/h^2; |
108 S2_1=zeros(1,m); | 114 S2_1=sparse(1,m); |
109 S2_1(1:4)=S2_U; | 115 S2_1(1:4)=S2_U; |
110 S2_m=zeros(1,m); | 116 S2_m=sparse(1,m); |
111 S2_m(m-3:m)=fliplr(S2_U); | 117 S2_m(m-3:m)=fliplr(S2_U); |
112 | 118 |
113 | 119 |
114 | 120 |
115 D3=HI*(Q3 - e_1*S2_1 + e_m*S2_m +1/2*S_1'*S_1 -1/2*S_m'*S_m ) ; | 121 D3=H\(Q3 - e_1*S2_1 + e_m*S2_m +1/2*(S_1'*S_1) -1/2*(S_m'*S_m) ) ; |
116 | 122 |
117 % Fourth derivative, 0th order accurate at first 6 boundary points (still | 123 % Fourth derivative, 0th order accurate at first 6 boundary points (still |
118 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | 124 % yield 4th order convergence if stable: for example u_tt=-u_xxxx |
119 | 125 |
120 m3=-1/6;m2=2;m1=-13/2;m0=28/3; | 126 m3=-1/6;m2=2;m1=-13/2;m0=28/3; |
121 M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | 127 % M4=m3*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3))+m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); |
128 diags = -3:3; | |
129 left_stencil = [m3,m2,m1]; | |
130 stencil = [left_stencil,m0,fliplr(left_stencil)]; | |
131 M4 = stripeMatrix(stencil, diags, m); | |
122 | 132 |
123 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | 133 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); |
124 | 134 |
125 M4_U=[0.4596181e7 / 0.1814400e7 -0.10307743e8 / 0.1814400e7 0.160961e6 / 0.43200e5 -0.535019e6 / 0.907200e6 0.109057e6 / 0.1814400e7 -0.29273e5 / 0.604800e6; -0.10307743e8 / 0.1814400e7 0.8368543e7 / 0.604800e6 -0.9558943e7 / 0.907200e6 0.2177057e7 / 0.907200e6 -0.11351e5 / 0.86400e5 0.204257e6 / 0.1814400e7; 0.160961e6 / 0.43200e5 -0.9558943e7 / 0.907200e6 0.4938581e7 / 0.453600e6 -0.786473e6 / 0.151200e6 0.1141057e7 / 0.907200e6 -0.120619e6 / 0.907200e6; -0.535019e6 / 0.907200e6 0.2177057e7 / 0.907200e6 -0.786473e6 / 0.151200e6 0.3146581e7 / 0.453600e6 -0.4614143e7 / 0.907200e6 0.24587e5 / 0.14400e5; 0.109057e6 / 0.1814400e7 -0.11351e5 / 0.86400e5 0.1141057e7 / 0.907200e6 -0.4614143e7 / 0.907200e6 0.185709e6 / 0.22400e5 -0.11293343e8 / 0.1814400e7; -0.29273e5 / 0.604800e6 0.204257e6 / 0.1814400e7 -0.120619e6 / 0.907200e6 0.24587e5 / 0.14400e5 -0.11293343e8 / 0.1814400e7 0.16787381e8 / 0.1814400e7;]; | 135 M4_U=[0.4596181e7 / 0.1814400e7 -0.10307743e8 / 0.1814400e7 0.160961e6 / 0.43200e5 -0.535019e6 / 0.907200e6 0.109057e6 / 0.1814400e7 -0.29273e5 / 0.604800e6; -0.10307743e8 / 0.1814400e7 0.8368543e7 / 0.604800e6 -0.9558943e7 / 0.907200e6 0.2177057e7 / 0.907200e6 -0.11351e5 / 0.86400e5 0.204257e6 / 0.1814400e7; 0.160961e6 / 0.43200e5 -0.9558943e7 / 0.907200e6 0.4938581e7 / 0.453600e6 -0.786473e6 / 0.151200e6 0.1141057e7 / 0.907200e6 -0.120619e6 / 0.907200e6; -0.535019e6 / 0.907200e6 0.2177057e7 / 0.907200e6 -0.786473e6 / 0.151200e6 0.3146581e7 / 0.453600e6 -0.4614143e7 / 0.907200e6 0.24587e5 / 0.14400e5; 0.109057e6 / 0.1814400e7 -0.11351e5 / 0.86400e5 0.1141057e7 / 0.907200e6 -0.4614143e7 / 0.907200e6 0.185709e6 / 0.22400e5 -0.11293343e8 / 0.1814400e7; -0.29273e5 / 0.604800e6 0.204257e6 / 0.1814400e7 -0.120619e6 / 0.907200e6 0.24587e5 / 0.14400e5 -0.11293343e8 / 0.1814400e7 0.16787381e8 / 0.1814400e7;]; |
126 | 136 |
127 M4(1:6,1:6)=M4_U; | 137 M4(1:6,1:6)=M4_U; |
128 | 138 |
129 M4(m-5:m,m-5:m)=flipud( fliplr( M4_U ) ); | 139 M4(m-5:m,m-5:m)=rot90( M4_U ,2 ); |
130 M4=M4/h^3; | 140 M4=M4/h^3; |
131 | 141 |
132 S3_U=[-1 3 -3 1;]/h^3; | 142 S3_U=[-1 3 -3 1;]/h^3; |
133 S3_1=zeros(1,m); | 143 S3_1=sparse(1,m); |
134 S3_1(1:4)=S3_U; | 144 S3_1(1:4)=S3_U; |
135 S3_m=zeros(1,m); | 145 S3_m=sparse(1,m); |
136 S3_m(m-3:m)=fliplr(-S3_U); | 146 S3_m(m-3:m)=fliplr(-S3_U); |
137 | 147 |
138 D4=HI*(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); | 148 D4=H\(M4-e_1*S3_1+e_m*S3_m + S_1'*S2_1-S_m'*S2_m); |
139 | 149 |
140 | 150 |
141 % L=h*(m-1); | 151 % L=h*(m-1); |
142 % | 152 % |
143 % x1=linspace(0,L,m)'; | 153 % x1=linspace(0,L,m)'; |