Mercurial > repos > public > sbplib
diff +time/SBPInTimeImplicitFormulation.m @ 460:e0caae9ef6ed feature/grids
Add SBPinTime for linear DAE formulations (BUGS!)
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 19 Jun 2017 16:50:13 +0200 |
parents | |
children | 0b010f8de7cb |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+time/SBPInTimeImplicitFormulation.m Mon Jun 19 16:50:13 2017 +0200 @@ -0,0 +1,124 @@ +classdef SBPInTimeImplicitFormulation < time.Timestepper + % The SBP in time method. + % Implemented for A*v_t = B*v + f(t), v(0) = v0 + properties + A,B + f + + k % total time step. + + blockSize % number of points in each block + N % Number of components + + order + nodes + + M,K % System matrices + L,U,p,q % LU factorization of M + e_T + + % Time state + t + v + n + end + + methods + function obj = SBPInTimeImplicitFormulation(A, B, f, k, t0, v0, TYPE, order, blockSize) + + default_arg('TYPE','gauss'); + + if(strcmp(TYPE,'gauss')) + default_arg('order',4) + default_arg('blockSize',4) + else + default_arg('order', 8); + default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); + end + + obj.A = A; + obj.B = B; + obj.f = f; + + obj.k = k; + obj.blockSize = blockSize; + obj.N = length(v0); + + obj.n = 0; + obj.t = t0; + + %==== Build the time discretization matrix =====% + switch TYPE + case 'equidistant' + ops = sbp.D2Standard(blockSize,{0,obj.k},order); + case 'optimal' + ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); + case 'minimal' + ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); + case 'gauss' + ops = sbp.D1Gauss(blockSize,{0,obj.k}); + end + + I = speye(size(A)); + I_t = speye(blockSize,blockSize); + + D1 = kron(ops.D1, I); + HI = kron(ops.HI, I); + e_0 = kron(ops.e_l, I); + e_T = kron(ops.e_r, I); + obj.nodes = ops.x; + + % Convert to form M*w = K*v0 + f(t) + tau = kron(I_t, A) * e_0; + M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); + + K = HI*tau; + + obj.M = M; + obj.K = K; + obj.e_T = e_T; + + % LU factorization + [obj.L,obj.U,obj.p,obj.q] = lu(obj.M, 'vector'); + + obj.v = v0; + end + + function [v,t] = getV(obj) + v = obj.v; + t = obj.t; + end + + function obj = step(obj) + RHS = zeros(obj.blockSize*obj.N,1); + + for i = 1:length(obj.blockSize) + RHS((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.nodes(i)); + end + + RHS = RHS + obj.K*obj.v; + + y = obj.L\RHS(obj.p); + z = obj.U\y; + + w = zeros(size(z)); + w(obj.q) = z; + + obj.v = obj.e_T'*w; + + obj.t = obj.t + obj.k; + obj.n = obj.n + 1; + end + end + + methods(Static) + function N = smallestBlockSize(order,TYPE) + default_arg('TYPE','gauss') + + switch TYPE + case 'gauss' + N = 4; + end + end + end +end