Mercurial > repos > public > sbplib
comparison +time/SBPInTimeImplicitFormulation.m @ 460:e0caae9ef6ed feature/grids
Add SBPinTime for linear DAE formulations (BUGS!)
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 19 Jun 2017 16:50:13 +0200 |
parents | |
children | 0b010f8de7cb |
comparison
equal
deleted
inserted
replaced
459:1147db8a2ffa | 460:e0caae9ef6ed |
---|---|
1 classdef SBPInTimeImplicitFormulation < time.Timestepper | |
2 % The SBP in time method. | |
3 % Implemented for A*v_t = B*v + f(t), v(0) = v0 | |
4 properties | |
5 A,B | |
6 f | |
7 | |
8 k % total time step. | |
9 | |
10 blockSize % number of points in each block | |
11 N % Number of components | |
12 | |
13 order | |
14 nodes | |
15 | |
16 M,K % System matrices | |
17 L,U,p,q % LU factorization of M | |
18 e_T | |
19 | |
20 % Time state | |
21 t | |
22 v | |
23 n | |
24 end | |
25 | |
26 methods | |
27 function obj = SBPInTimeImplicitFormulation(A, B, f, k, t0, v0, TYPE, order, blockSize) | |
28 | |
29 default_arg('TYPE','gauss'); | |
30 | |
31 if(strcmp(TYPE,'gauss')) | |
32 default_arg('order',4) | |
33 default_arg('blockSize',4) | |
34 else | |
35 default_arg('order', 8); | |
36 default_arg('blockSize',time.SBPInTimeImplicitFormulation.smallestBlockSize(order,TYPE)); | |
37 end | |
38 | |
39 obj.A = A; | |
40 obj.B = B; | |
41 obj.f = f; | |
42 | |
43 obj.k = k; | |
44 obj.blockSize = blockSize; | |
45 obj.N = length(v0); | |
46 | |
47 obj.n = 0; | |
48 obj.t = t0; | |
49 | |
50 %==== Build the time discretization matrix =====% | |
51 switch TYPE | |
52 case 'equidistant' | |
53 ops = sbp.D2Standard(blockSize,{0,obj.k},order); | |
54 case 'optimal' | |
55 ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order); | |
56 case 'minimal' | |
57 ops = sbp.D1Nonequidistant(blockSize,{0,obj.k},order,'minimal'); | |
58 case 'gauss' | |
59 ops = sbp.D1Gauss(blockSize,{0,obj.k}); | |
60 end | |
61 | |
62 I = speye(size(A)); | |
63 I_t = speye(blockSize,blockSize); | |
64 | |
65 D1 = kron(ops.D1, I); | |
66 HI = kron(ops.HI, I); | |
67 e_0 = kron(ops.e_l, I); | |
68 e_T = kron(ops.e_r, I); | |
69 obj.nodes = ops.x; | |
70 | |
71 % Convert to form M*w = K*v0 + f(t) | |
72 tau = kron(I_t, A) * e_0; | |
73 M = kron(I_t, A)*D1 + HI*tau*e_0' - kron(I_t, B); | |
74 | |
75 K = HI*tau; | |
76 | |
77 obj.M = M; | |
78 obj.K = K; | |
79 obj.e_T = e_T; | |
80 | |
81 % LU factorization | |
82 [obj.L,obj.U,obj.p,obj.q] = lu(obj.M, 'vector'); | |
83 | |
84 obj.v = v0; | |
85 end | |
86 | |
87 function [v,t] = getV(obj) | |
88 v = obj.v; | |
89 t = obj.t; | |
90 end | |
91 | |
92 function obj = step(obj) | |
93 RHS = zeros(obj.blockSize*obj.N,1); | |
94 | |
95 for i = 1:length(obj.blockSize) | |
96 RHS((1 + (i-1)*obj.N):(i*obj.N)) = obj.f(obj.nodes(i)); | |
97 end | |
98 | |
99 RHS = RHS + obj.K*obj.v; | |
100 | |
101 y = obj.L\RHS(obj.p); | |
102 z = obj.U\y; | |
103 | |
104 w = zeros(size(z)); | |
105 w(obj.q) = z; | |
106 | |
107 obj.v = obj.e_T'*w; | |
108 | |
109 obj.t = obj.t + obj.k; | |
110 obj.n = obj.n + 1; | |
111 end | |
112 end | |
113 | |
114 methods(Static) | |
115 function N = smallestBlockSize(order,TYPE) | |
116 default_arg('TYPE','gauss') | |
117 | |
118 switch TYPE | |
119 case 'gauss' | |
120 N = 4; | |
121 end | |
122 end | |
123 end | |
124 end |