Mercurial > repos > public > sbplib
diff +rv/+time/RungekuttaRvBdf.m @ 1169:d02e5b8a0b24 feature/rv
Rename RungekuttaRV time steppers. Add RungekuttaRVMultiStage time stepper
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 28 Jun 2019 13:13:17 +0200 |
parents | +rv/+time/RungekuttaExteriorRvBdf.m@3108963cc42c |
children | a4c00628a39d |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+rv/+time/RungekuttaRvBdf.m Fri Jun 28 13:13:17 2019 +0200 @@ -0,0 +1,93 @@ +classdef RungekuttaRvBdf < time.Timestepper + properties + F % RHS of the ODE + k % Time step + t % Time point + v % Solution vector + n % Time level + rkScheme % The particular RK scheme used for time integration + + + % Properties related to the residual viscositys + RV % Residual Viscosity operator + v_prev % Solution vector at previous time levels, used for the RV evaluation + DvDt % Function for computing the time deriative used for the RV evaluation + lowerBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. + % dictates which accuracy the boot-strapping should start from. + upperBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. + % Dictates the order of accuracy used once the boot-strapping is complete. + + + end + methods + function obj = RungekuttaRvBdf(F, k, t0, v0, RV, rkOrder, bdfOrders) + obj.F = F; + obj.k = k; + obj.t = t0; + obj.v = v0; + obj.n = 0; + obj.RV = RV; + obj.lowerBdfOrder = bdfOrders.lowerBdfOrder; + obj.upperBdfOrder = bdfOrders.upperBdfOrder; + assert((obj.lowerBdfOrder >= 1) && (obj.upperBdfOrder <= 6)); + obj.v_prev = []; + obj.DvDt = rv.time.BdfDerivative(); + + if (rkOrder == 4) % Use specialized RK4 scheme + obj.rkScheme = @time.rk.rungekutta_4; + else + % Extract the coefficients for the specified order + % used for the RK updates from the Butcher tableua. + [s,a,b,c] = time.rk.butcherTableau(rkOrder); + coeffs = struct('s',s,'a',a,'b',b,'c',c); + obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs); + end + + end + + function [v, t] = getV(obj) + v = obj.v; + t = obj.t; + end + + function state = getState(obj) + if (size(obj.v_prev,2) >= obj.lowerBdfOrder) + dvdt = obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k); + [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt); + else + viscosity = zeros(size(obj.v)); + dvdt = zeros(size(obj.v)); + Df = zeros(size(obj.v)); + firstOrderViscosity = zeros(size(obj.v)); + residualViscosity = zeros(size(obj.v)); + end + state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t); + end + + function obj = step(obj) + nStoredStages = size(obj.v_prev,2); + + %Calculate viscosity for the new time level + if (nStoredStages >= obj.lowerBdfOrder) + viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k)); + else + viscosity = zeros(size(obj.v)); + end + + % Store current time level and update v_prev + if (nStoredStages < obj.upperBdfOrder) + obj.v_prev = [obj.v, obj.v_prev]; + else + obj.v_prev(:,2:end) = obj.v_prev(:,1:end-1); + obj.v_prev(:,1) = obj.v; + end + + % Fix the viscosity of the RHS function F + m = length(viscosity); + F_visc = @(v,t) obj.F(v, t, spdiags(viscosity,0,m,m)); + obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_visc); + obj.t = obj.t + obj.k; + obj.n = obj.n + 1; + end + end +end \ No newline at end of file