Mercurial > repos > public > sbplib
comparison +rv/+time/RungekuttaRvBdf.m @ 1169:d02e5b8a0b24 feature/rv
Rename RungekuttaRV time steppers. Add RungekuttaRVMultiStage time stepper
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Fri, 28 Jun 2019 13:13:17 +0200 |
parents | +rv/+time/RungekuttaExteriorRvBdf.m@3108963cc42c |
children | a4c00628a39d |
comparison
equal
deleted
inserted
replaced
1168:af3c4eb0cbbd | 1169:d02e5b8a0b24 |
---|---|
1 classdef RungekuttaRvBdf < time.Timestepper | |
2 properties | |
3 F % RHS of the ODE | |
4 k % Time step | |
5 t % Time point | |
6 v % Solution vector | |
7 n % Time level | |
8 rkScheme % The particular RK scheme used for time integration | |
9 | |
10 | |
11 % Properties related to the residual viscositys | |
12 RV % Residual Viscosity operator | |
13 v_prev % Solution vector at previous time levels, used for the RV evaluation | |
14 DvDt % Function for computing the time deriative used for the RV evaluation | |
15 lowerBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. | |
16 % dictates which accuracy the boot-strapping should start from. | |
17 upperBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. | |
18 % Dictates the order of accuracy used once the boot-strapping is complete. | |
19 | |
20 | |
21 end | |
22 methods | |
23 function obj = RungekuttaRvBdf(F, k, t0, v0, RV, rkOrder, bdfOrders) | |
24 obj.F = F; | |
25 obj.k = k; | |
26 obj.t = t0; | |
27 obj.v = v0; | |
28 obj.n = 0; | |
29 obj.RV = RV; | |
30 obj.lowerBdfOrder = bdfOrders.lowerBdfOrder; | |
31 obj.upperBdfOrder = bdfOrders.upperBdfOrder; | |
32 assert((obj.lowerBdfOrder >= 1) && (obj.upperBdfOrder <= 6)); | |
33 obj.v_prev = []; | |
34 obj.DvDt = rv.time.BdfDerivative(); | |
35 | |
36 if (rkOrder == 4) % Use specialized RK4 scheme | |
37 obj.rkScheme = @time.rk.rungekutta_4; | |
38 else | |
39 % Extract the coefficients for the specified order | |
40 % used for the RK updates from the Butcher tableua. | |
41 [s,a,b,c] = time.rk.butcherTableau(rkOrder); | |
42 coeffs = struct('s',s,'a',a,'b',b,'c',c); | |
43 obj.rkScheme = @(v,t,dt,F) time.rk.rungekutta(v, t , dt, F, coeffs); | |
44 end | |
45 | |
46 end | |
47 | |
48 function [v, t] = getV(obj) | |
49 v = obj.v; | |
50 t = obj.t; | |
51 end | |
52 | |
53 function state = getState(obj) | |
54 if (size(obj.v_prev,2) >= obj.lowerBdfOrder) | |
55 dvdt = obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k); | |
56 [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt); | |
57 else | |
58 viscosity = zeros(size(obj.v)); | |
59 dvdt = zeros(size(obj.v)); | |
60 Df = zeros(size(obj.v)); | |
61 firstOrderViscosity = zeros(size(obj.v)); | |
62 residualViscosity = zeros(size(obj.v)); | |
63 end | |
64 state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t); | |
65 end | |
66 | |
67 function obj = step(obj) | |
68 nStoredStages = size(obj.v_prev,2); | |
69 | |
70 %Calculate viscosity for the new time level | |
71 if (nStoredStages >= obj.lowerBdfOrder) | |
72 viscosity = obj.RV.evaluateViscosity(obj.v, obj.DvDt.evaluate(obj.v, obj.v_prev, obj.k)); | |
73 else | |
74 viscosity = zeros(size(obj.v)); | |
75 end | |
76 | |
77 % Store current time level and update v_prev | |
78 if (nStoredStages < obj.upperBdfOrder) | |
79 obj.v_prev = [obj.v, obj.v_prev]; | |
80 else | |
81 obj.v_prev(:,2:end) = obj.v_prev(:,1:end-1); | |
82 obj.v_prev(:,1) = obj.v; | |
83 end | |
84 | |
85 % Fix the viscosity of the RHS function F | |
86 m = length(viscosity); | |
87 F_visc = @(v,t) obj.F(v, t, spdiags(viscosity,0,m,m)); | |
88 obj.v = obj.rkScheme(obj.v, obj.t, obj.k, F_visc); | |
89 obj.t = obj.t + obj.k; | |
90 obj.n = obj.n + 1; | |
91 end | |
92 end | |
93 end |