Mercurial > repos > public > sbplib
diff +scheme/Hypsyst3d.m @ 349:cd6a29ab3746 feature/hypsyst
A 3D is added and an attempt to imlement 3D transfinit interpolation has been initialized
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Thu, 13 Oct 2016 09:34:30 +0200 |
parents | |
children | 5d5652fe826a |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Hypsyst3d.m Thu Oct 13 09:34:30 2016 +0200 @@ -0,0 +1,318 @@ +classdef Hypsyst3d < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + n %size of system + h % Grid spacing + x, y, z % Grid + X, Y, Z% Values of x and y for each grid point + Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + A, B, C, E + + H % Discrete norm + % Norms in the x, y and z directions + Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. + I_x,I_y, I_z, I_N + e_w, e_e, e_s, e_n, e_b, e_t + params %parameters for the coeficient matrice + end + + + methods + function obj = Hypsyst3d(m, lim, order, A, B,C, E, params) + default_arg('E', []) + xlim = lim{1}; + ylim = lim{2}; + zlim = lim{3}; + + if length(m) == 1 + m = [m m m]; + end + + obj.A=A; + obj.B=B; + obj.C=C; + obj.E=E; + m_x = m(1); + m_y = m(2); + m_z=m(3); + obj.params = params; + + ops_x = sbp.D2Standard(m_x,xlim,order); + ops_y = sbp.D2Standard(m_y,ylim,order); + ops_z = sbp.D2Standard(m_z,zlim,order); + + obj.x = ops_x.x; + obj.y = ops_y.x; + obj.z = ops_z.x; + + obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));%% Que pasa? + obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); + obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); + + obj.Yx=kr(obj.y,ones(m_z,1)); + obj.Zx=kr(ones(m_y,1),obj.z); + + obj.Xy=kr(obj.x,ones(m_z,1)); + obj.Zy=kr(ones(m_x,1),obj.z); + + obj.Xz=kr(obj.x,ones(m_y,1)); + obj.Yz=kr(ones(m_z,1),obj.y); + + Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); + Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); + Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z); + Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z); + + obj.n = length(A(obj.params,0,0,0)); + + I_n = eye(obj.n); + I_x = speye(m_x); + obj.I_x = I_x; + I_y = speye(m_y); + obj.I_y = I_y; + I_z = speye(m_z); + obj.I_z = I_z; + + + D1_x = kr(I_n, ops_x.D1, I_y,I_z); + obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); + D1_y = kr(I_n, I_x, ops_y.D1,I_z); + obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); + D1_z = kr(I_n, I_x, I_y,ops_z.D1); + obj.Hzi = kr(I_n, I_x,I_y, ops_y.HI); + + obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); + obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); + obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z); + obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z); + obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); + obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); + + obj.m=m; + obj.h=[ops_x.h ops_y.h ops_x.h]; + obj.order=order; + + obj.D=-Aevaluated*D1_x-Bevaluated*D1_y-Cevaluated*D1_z-Eevaluated; + end + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + function [closure, penalty] = boundary_condition(obj,boundary,type,L) + default_arg('type','char'); + BM=boundary_matrices(obj,boundary); + + switch type + case{'c','char'} + [closure,penalty]=boundary_condition_char(obj,BM); + case{'general'} + [closure,penalty]=boundary_condition_general(obj,BM,boundary,L); + otherwise + error('No such boundary condition') + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + error('An interface function does not exist yet'); + end + + function N = size(obj) + N = obj.m; + end + + function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) + params=obj.params; + side=max(length(X),length(Y)); + if isa(mat,'function_handle') + [rows,cols]=size(mat(params,0,0,0)); + matVec=mat(params,X',Y',Z'); + matVec=sparse(matVec); + else + matVec=mat; + [rows,cols]=size(matVec); + side=max(length(X),length(Y)); + cols=cols/side; + end + ret=kron(ones(rows,cols),speye(side)); + + for ii=1:rows + for jj=1:cols + ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); + end + end + end + + + function [BM]=boundary_matrices(obj,boundary) + params=obj.params; + + switch boundary + case {'w','W','west'} + BM.e_=obj.e_w; + mat=obj.A; + BM.boundpos='l'; + BM.Hi=obj.Hxi; + [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx); + BM.side=length(obj.Yx); + case {'e','E','east'} + BM.e_=obj.e_e; + mat=obj.A; + BM.boundpos='r'; + BM.Hi=obj.Hxi; + [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx); + BM.side=length(obj.Yx); + case {'s','S','south'} + BM.e_=obj.e_s; + mat=obj.B; + BM.boundpos='l'; + BM.Hi=obj.Hyi; + [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy); + BM.side=length(obj.Xy); + case {'n','N','north'} + BM.e_=obj.e_n; + mat=obj.B; + BM.boundpos='r'; + BM.Hi=obj.Hyi; + [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy); + BM.side=length(obj.Xy); + case{'b','B','Bottom'} + BM.e_=obj.e_b; + mat=obj.C; + BM.boundpos='l'; + BM.Hi=obj.Hzi; + [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1)); + BM.side=length(obj.Xz); + case{'t','T','Top'} + BM.e_=obj.e_t; + mat=obj.C; + BM.boundpos='r'; + BM.Hi=obj.Hzi; + [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end)); + BM.side=length(obj.Xz); + end + + BM.pos=signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); + end + + + function [closure, penalty]=boundary_condition_char(obj,BM) + side = BM.side; + pos = BM.pos; + neg = BM.neg; + zeroval=BM.zeroval; + V = BM.V; + Vi = BM.Vi; + Hi=BM.Hi; + D=BM.D; + e_=BM.e_; + + switch BM.boundpos + case {'l'} + tau=sparse(obj.n*side,pos); + Vi_plus=Vi(1:pos,:); + tau(1:pos,:)=-abs(D(1:pos,1:pos)); + closure=Hi*e_*V*tau*Vi_plus*e_'; + penalty=-Hi*e_*V*tau*Vi_plus; + case {'r'} + tau=sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); + closure=Hi*e_*V*tau*Vi_minus*e_'; + penalty=-Hi*e_*V*tau*Vi_minus; + end + end + + + function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L) + side = BM.side; + pos = BM.pos; + neg = BM.neg; + zeroval=BM.zeroval; + V = BM.V; + Vi = BM.Vi; + Hi=BM.Hi; + D=BM.D; + e_=BM.e_; + switch boundary + case {'w','W','west'} + L=obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); + case {'e','E','east'} + L=obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); + case {'s','S','south'} + L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); + case {'n','N','north'} + L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy); + case {'b','B','bottom'} + L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); + case {'t','T','top'} + L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); + end + + switch BM.boundpos + case {'l'} + tau=sparse(obj.n*side,pos); + Vi_plus=Vi(1:pos,:); + Vi_minus=Vi(pos+zeroval+1:obj.n*side,:); + V_plus=V(:,1:pos); + V_minus=V(:,(pos+zeroval)+1:obj.n*side); + + tau(1:pos,:)=-abs(D(1:pos,1:pos)); + R=-inv(L*V_plus)*(L*V_minus); + closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; + penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; + case {'r'} + tau=sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_plus=Vi(1:pos,:); + Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); + + V_plus=V(:,1:pos); + V_minus=V(:,(pos+zeroval)+1:obj.n*side); + R=-inv(L*V_minus)*(L*V_plus); + closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; + penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; + end + end + + + function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z) + params=obj.params; + syms xs ys zs + [V, D]=eig(mat(params,xs,ys,zs)); + xs=x; + ys=y; + zs=z; + + + side=max(length(x),length(y)); + Dret=zeros(obj.n,side*obj.n); + Vret=zeros(obj.n,side*obj.n); + for ii=1:obj.n + for jj=1:obj.n + Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); + Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); + end + end + + D=sparse(Dret); + V=sparse(Vret); + V=obj.evaluateCoefficientMatrix(V,x,y,z); + D=obj.evaluateCoefficientMatrix(D,x,y,z); + DD=diag(D); + + poseig=(DD>0); + zeroeig=(DD==0); + negeig=(DD<0); + + D=diag([DD(poseig); DD(zeroeig); DD(negeig)]); + V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; + Vi=inv(V); + signVec=[sum(poseig),sum(zeroeig),sum(negeig)]; + end + end +end \ No newline at end of file