Mercurial > repos > public > sbplib
comparison +scheme/Hypsyst3d.m @ 349:cd6a29ab3746 feature/hypsyst
A 3D is added and an attempt to imlement 3D transfinit interpolation has been initialized
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Thu, 13 Oct 2016 09:34:30 +0200 |
parents | |
children | 5d5652fe826a |
comparison
equal
deleted
inserted
replaced
301:d9860ebc3148 | 349:cd6a29ab3746 |
---|---|
1 classdef Hypsyst3d < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 n %size of system | |
5 h % Grid spacing | |
6 x, y, z % Grid | |
7 X, Y, Z% Values of x and y for each grid point | |
8 Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces | |
9 order % Order accuracy for the approximation | |
10 | |
11 D % non-stabalized scheme operator | |
12 A, B, C, E | |
13 | |
14 H % Discrete norm | |
15 % Norms in the x, y and z directions | |
16 Hxi,Hyi, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | |
17 I_x,I_y, I_z, I_N | |
18 e_w, e_e, e_s, e_n, e_b, e_t | |
19 params %parameters for the coeficient matrice | |
20 end | |
21 | |
22 | |
23 methods | |
24 function obj = Hypsyst3d(m, lim, order, A, B,C, E, params) | |
25 default_arg('E', []) | |
26 xlim = lim{1}; | |
27 ylim = lim{2}; | |
28 zlim = lim{3}; | |
29 | |
30 if length(m) == 1 | |
31 m = [m m m]; | |
32 end | |
33 | |
34 obj.A=A; | |
35 obj.B=B; | |
36 obj.C=C; | |
37 obj.E=E; | |
38 m_x = m(1); | |
39 m_y = m(2); | |
40 m_z=m(3); | |
41 obj.params = params; | |
42 | |
43 ops_x = sbp.D2Standard(m_x,xlim,order); | |
44 ops_y = sbp.D2Standard(m_y,ylim,order); | |
45 ops_z = sbp.D2Standard(m_z,zlim,order); | |
46 | |
47 obj.x = ops_x.x; | |
48 obj.y = ops_y.x; | |
49 obj.z = ops_z.x; | |
50 | |
51 obj.X = kr(obj.x,ones(m_y,1),ones(m_z,1));%% Que pasa? | |
52 obj.Y = kr(ones(m_x,1),obj.y,ones(m_z,1)); | |
53 obj.Z = kr(ones(m_x,1),ones(m_y,1),obj.z); | |
54 | |
55 obj.Yx=kr(obj.y,ones(m_z,1)); | |
56 obj.Zx=kr(ones(m_y,1),obj.z); | |
57 | |
58 obj.Xy=kr(obj.x,ones(m_z,1)); | |
59 obj.Zy=kr(ones(m_x,1),obj.z); | |
60 | |
61 obj.Xz=kr(obj.x,ones(m_y,1)); | |
62 obj.Yz=kr(ones(m_z,1),obj.y); | |
63 | |
64 Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y,obj.Z); | |
65 Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y,obj.Z); | |
66 Cevaluated = obj.evaluateCoefficientMatrix(C, obj.X, obj.Y,obj.Z); | |
67 Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y,obj.Z); | |
68 | |
69 obj.n = length(A(obj.params,0,0,0)); | |
70 | |
71 I_n = eye(obj.n); | |
72 I_x = speye(m_x); | |
73 obj.I_x = I_x; | |
74 I_y = speye(m_y); | |
75 obj.I_y = I_y; | |
76 I_z = speye(m_z); | |
77 obj.I_z = I_z; | |
78 | |
79 | |
80 D1_x = kr(I_n, ops_x.D1, I_y,I_z); | |
81 obj.Hxi = kr(I_n, ops_x.HI, I_y,I_z); | |
82 D1_y = kr(I_n, I_x, ops_y.D1,I_z); | |
83 obj.Hyi = kr(I_n, I_x, ops_y.HI,I_z); | |
84 D1_z = kr(I_n, I_x, I_y,ops_z.D1); | |
85 obj.Hzi = kr(I_n, I_x,I_y, ops_y.HI); | |
86 | |
87 obj.e_w = kr(I_n, ops_x.e_l, I_y,I_z); | |
88 obj.e_e = kr(I_n, ops_x.e_r, I_y,I_z); | |
89 obj.e_s = kr(I_n, I_x, ops_y.e_l,I_z); | |
90 obj.e_n = kr(I_n, I_x, ops_y.e_r,I_z); | |
91 obj.e_b = kr(I_n, I_x, I_y, ops_z.e_l); | |
92 obj.e_t = kr(I_n, I_x, I_y, ops_z.e_r); | |
93 | |
94 obj.m=m; | |
95 obj.h=[ops_x.h ops_y.h ops_x.h]; | |
96 obj.order=order; | |
97 | |
98 obj.D=-Aevaluated*D1_x-Bevaluated*D1_y-Cevaluated*D1_z-Eevaluated; | |
99 end | |
100 | |
101 % Closure functions return the opertors applied to the own doamin to close the boundary | |
102 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
103 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
104 % type is a string specifying the type of boundary condition if there are several. | |
105 % data is a function returning the data that should be applied at the boundary. | |
106 function [closure, penalty] = boundary_condition(obj,boundary,type,L) | |
107 default_arg('type','char'); | |
108 BM=boundary_matrices(obj,boundary); | |
109 | |
110 switch type | |
111 case{'c','char'} | |
112 [closure,penalty]=boundary_condition_char(obj,BM); | |
113 case{'general'} | |
114 [closure,penalty]=boundary_condition_general(obj,BM,boundary,L); | |
115 otherwise | |
116 error('No such boundary condition') | |
117 end | |
118 end | |
119 | |
120 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
121 error('An interface function does not exist yet'); | |
122 end | |
123 | |
124 function N = size(obj) | |
125 N = obj.m; | |
126 end | |
127 | |
128 function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y, Z) | |
129 params=obj.params; | |
130 side=max(length(X),length(Y)); | |
131 if isa(mat,'function_handle') | |
132 [rows,cols]=size(mat(params,0,0,0)); | |
133 matVec=mat(params,X',Y',Z'); | |
134 matVec=sparse(matVec); | |
135 else | |
136 matVec=mat; | |
137 [rows,cols]=size(matVec); | |
138 side=max(length(X),length(Y)); | |
139 cols=cols/side; | |
140 end | |
141 ret=kron(ones(rows,cols),speye(side)); | |
142 | |
143 for ii=1:rows | |
144 for jj=1:cols | |
145 ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); | |
146 end | |
147 end | |
148 end | |
149 | |
150 | |
151 function [BM]=boundary_matrices(obj,boundary) | |
152 params=obj.params; | |
153 | |
154 switch boundary | |
155 case {'w','W','west'} | |
156 BM.e_=obj.e_w; | |
157 mat=obj.A; | |
158 BM.boundpos='l'; | |
159 BM.Hi=obj.Hxi; | |
160 [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(1),obj.Yx,obj.Zx); | |
161 BM.side=length(obj.Yx); | |
162 case {'e','E','east'} | |
163 BM.e_=obj.e_e; | |
164 mat=obj.A; | |
165 BM.boundpos='r'; | |
166 BM.Hi=obj.Hxi; | |
167 [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.X(end),obj.Yx,obj.Zx); | |
168 BM.side=length(obj.Yx); | |
169 case {'s','S','south'} | |
170 BM.e_=obj.e_s; | |
171 mat=obj.B; | |
172 BM.boundpos='l'; | |
173 BM.Hi=obj.Hyi; | |
174 [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(1),obj.Zy); | |
175 BM.side=length(obj.Xy); | |
176 case {'n','N','north'} | |
177 BM.e_=obj.e_n; | |
178 mat=obj.B; | |
179 BM.boundpos='r'; | |
180 BM.Hi=obj.Hyi; | |
181 [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xy,obj.Y(end),obj.Zy); | |
182 BM.side=length(obj.Xy); | |
183 case{'b','B','Bottom'} | |
184 BM.e_=obj.e_b; | |
185 mat=obj.C; | |
186 BM.boundpos='l'; | |
187 BM.Hi=obj.Hzi; | |
188 [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(1)); | |
189 BM.side=length(obj.Xz); | |
190 case{'t','T','Top'} | |
191 BM.e_=obj.e_t; | |
192 mat=obj.C; | |
193 BM.boundpos='r'; | |
194 BM.Hi=obj.Hzi; | |
195 [BM.V,BM.Vi,BM.D,signVec]=obj.matrixDiag(mat,obj.Xz,obj.Yz,obj.Z(end)); | |
196 BM.side=length(obj.Xz); | |
197 end | |
198 | |
199 BM.pos=signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); | |
200 end | |
201 | |
202 | |
203 function [closure, penalty]=boundary_condition_char(obj,BM) | |
204 side = BM.side; | |
205 pos = BM.pos; | |
206 neg = BM.neg; | |
207 zeroval=BM.zeroval; | |
208 V = BM.V; | |
209 Vi = BM.Vi; | |
210 Hi=BM.Hi; | |
211 D=BM.D; | |
212 e_=BM.e_; | |
213 | |
214 switch BM.boundpos | |
215 case {'l'} | |
216 tau=sparse(obj.n*side,pos); | |
217 Vi_plus=Vi(1:pos,:); | |
218 tau(1:pos,:)=-abs(D(1:pos,1:pos)); | |
219 closure=Hi*e_*V*tau*Vi_plus*e_'; | |
220 penalty=-Hi*e_*V*tau*Vi_plus; | |
221 case {'r'} | |
222 tau=sparse(obj.n*side,neg); | |
223 tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); | |
224 Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); | |
225 closure=Hi*e_*V*tau*Vi_minus*e_'; | |
226 penalty=-Hi*e_*V*tau*Vi_minus; | |
227 end | |
228 end | |
229 | |
230 | |
231 function [closure,penalty]=boundary_condition_general(obj,BM,boundary,L) | |
232 side = BM.side; | |
233 pos = BM.pos; | |
234 neg = BM.neg; | |
235 zeroval=BM.zeroval; | |
236 V = BM.V; | |
237 Vi = BM.Vi; | |
238 Hi=BM.Hi; | |
239 D=BM.D; | |
240 e_=BM.e_; | |
241 switch boundary | |
242 case {'w','W','west'} | |
243 L=obj.evaluateCoefficientMatrix(L,obj.x(1),obj.Yx,obj.Zx); | |
244 case {'e','E','east'} | |
245 L=obj.evaluateCoefficientMatrix(L,obj.x(end),obj.Yx,obj.Zx); | |
246 case {'s','S','south'} | |
247 L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(1),obj.Zy); | |
248 case {'n','N','north'} | |
249 L=obj.evaluateCoefficientMatrix(L,obj.Xy,obj.y(end),obj.Zy); | |
250 case {'b','B','bottom'} | |
251 L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(1)); | |
252 case {'t','T','top'} | |
253 L=obj.evaluateCoefficientMatrix(L,obj.Xz,obj.Yz,obj.z(end)); | |
254 end | |
255 | |
256 switch BM.boundpos | |
257 case {'l'} | |
258 tau=sparse(obj.n*side,pos); | |
259 Vi_plus=Vi(1:pos,:); | |
260 Vi_minus=Vi(pos+zeroval+1:obj.n*side,:); | |
261 V_plus=V(:,1:pos); | |
262 V_minus=V(:,(pos+zeroval)+1:obj.n*side); | |
263 | |
264 tau(1:pos,:)=-abs(D(1:pos,1:pos)); | |
265 R=-inv(L*V_plus)*(L*V_minus); | |
266 closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; | |
267 penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; | |
268 case {'r'} | |
269 tau=sparse(obj.n*side,neg); | |
270 tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); | |
271 Vi_plus=Vi(1:pos,:); | |
272 Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); | |
273 | |
274 V_plus=V(:,1:pos); | |
275 V_minus=V(:,(pos+zeroval)+1:obj.n*side); | |
276 R=-inv(L*V_minus)*(L*V_plus); | |
277 closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; | |
278 penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; | |
279 end | |
280 end | |
281 | |
282 | |
283 function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y,z) | |
284 params=obj.params; | |
285 syms xs ys zs | |
286 [V, D]=eig(mat(params,xs,ys,zs)); | |
287 xs=x; | |
288 ys=y; | |
289 zs=z; | |
290 | |
291 | |
292 side=max(length(x),length(y)); | |
293 Dret=zeros(obj.n,side*obj.n); | |
294 Vret=zeros(obj.n,side*obj.n); | |
295 for ii=1:obj.n | |
296 for jj=1:obj.n | |
297 Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); | |
298 Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); | |
299 end | |
300 end | |
301 | |
302 D=sparse(Dret); | |
303 V=sparse(Vret); | |
304 V=obj.evaluateCoefficientMatrix(V,x,y,z); | |
305 D=obj.evaluateCoefficientMatrix(D,x,y,z); | |
306 DD=diag(D); | |
307 | |
308 poseig=(DD>0); | |
309 zeroeig=(DD==0); | |
310 negeig=(DD<0); | |
311 | |
312 D=diag([DD(poseig); DD(zeroeig); DD(negeig)]); | |
313 V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; | |
314 Vi=inv(V); | |
315 signVec=[sum(poseig),sum(zeroeig),sum(negeig)]; | |
316 end | |
317 end | |
318 end |