Mercurial > repos > public > sbplib
diff +scheme/Hypsyst2d.m @ 423:a2cb0d4f4a02 feature/grids
Merge in default.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Tue, 07 Feb 2017 15:47:51 +0100 |
parents | 9d1fc984f40d |
children | 459eeb99130f |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Hypsyst2d.m Tue Feb 07 15:47:51 2017 +0100 @@ -0,0 +1,301 @@ +classdef Hypsyst2d < scheme.Scheme + properties + m % Number of points in each direction, possibly a vector + n %size of system + h % Grid spacing + x,y % Grid + X,Y % Values of x and y for each grid point + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + A, B, E %Coefficient matrices + + H % Discrete norm + % Norms in the x and y directions + Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. + I_x,I_y, I_N + e_w, e_e, e_s, e_n + params %parameters for the coeficient matrice + end + + methods + %Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu + function obj = Hypsyst2d(m, lim, order, A, B, E, params) + default_arg('E', []) + xlim = lim{1}; + ylim = lim{2}; + + if length(m) == 1 + m = [m m]; + end + + obj.A=A; + obj.B=B; + obj.E=E; + + m_x = m(1); + m_y = m(2); + obj.params = params; + + ops_x = sbp.D2Standard(m_x,xlim,order); + ops_y = sbp.D2Standard(m_y,ylim,order); + + obj.x = ops_x.x; + obj.y = ops_y.x; + + obj.X = kr(obj.x,ones(m_y,1)); + obj.Y = kr(ones(m_x,1),obj.y); + + Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y); + Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y); + Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y); + + obj.n = length(A(obj.params,0,0)); + + I_n = eye(obj.n);I_x = speye(m_x); + obj.I_x = I_x; + I_y = speye(m_y); + obj.I_y = I_y; + + + D1_x = kr(I_n, ops_x.D1, I_y); + obj.Hxi = kr(I_n, ops_x.HI, I_y); + D1_y = kr(I_n, I_x, ops_y.D1); + obj.Hyi = kr(I_n, I_x, ops_y.HI); + + obj.e_w = kr(I_n, ops_x.e_l, I_y); + obj.e_e = kr(I_n, ops_x.e_r, I_y); + obj.e_s = kr(I_n, I_x, ops_y.e_l); + obj.e_n = kr(I_n, I_x, ops_y.e_r); + + obj.m = m; + obj.h = [ops_x.h ops_y.h]; + obj.order = order; + + obj.D = -Aevaluated*D1_x-Bevaluated*D1_y-Eevaluated; + + end + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + function [closure, penalty] = boundary_condition(obj,boundary,type,L) + default_arg('type','char'); + switch type + case{'c','char'} + [closure,penalty] = boundary_condition_char(obj,boundary); + case{'general'} + [closure,penalty] = boundary_condition_general(obj,boundary,L); + otherwise + error('No such boundary condition') + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + error('An interface function does not exist yet'); + end + + function N = size(obj) + N = obj.m; + end + + function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y) + params = obj.params; + + if isa(mat,'function_handle') + [rows,cols] = size(mat(params,0,0)); + matVec = mat(params,X',Y'); + matVec = sparse(matVec); + side = max(length(X),length(Y)); + else + matVec = mat; + [rows,cols] = size(matVec); + side = max(length(X),length(Y)); + cols = cols/side; + end + ret = cell(rows,cols); + + for ii = 1:rows + for jj=1:cols + ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); + end + end + ret = cell2mat(ret); + end + + %Characteristic boundary conditions + function [closure, penalty] = boundary_condition_char(obj,boundary) + params = obj.params; + x = obj.x; + y = obj.y; + + switch boundary + case {'w','W','west'} + e_ = obj.e_w; + mat = obj.A; + boundPos = 'l'; + Hi = obj.Hxi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y); + side = max(length(y)); + case {'e','E','east'} + e_ = obj.e_e; + mat = obj.A; + boundPos = 'r'; + Hi = obj.Hxi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y); + side = max(length(y)); + case {'s','S','south'} + e_ = obj.e_s; + mat = obj.B; + boundPos = 'l'; + Hi = obj.Hyi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1)); + side = max(length(x)); + case {'n','N','north'} + e_ = obj.e_n; + mat = obj.B; + boundPos = 'r'; + Hi = obj.Hyi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end)); + side = max(length(x)); + end + pos = signVec(1); + zeroval = signVec(2); + neg = signVec(3); + + switch boundPos + case {'l'} + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + closure = Hi*e_*V*tau*Vi_plus*e_'; + penalty = -Hi*e_*V*tau*Vi_plus; + case {'r'} + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + closure = Hi*e_*V*tau*Vi_minus*e_'; + penalty = -Hi*e_*V*tau*Vi_minus; + end + end + + % General boundary condition in the form Lu=g(x) + function [closure,penalty] = boundary_condition_general(obj,boundary,L) + params = obj.params; + x = obj.x; + y = obj.y; + + switch boundary + case {'w','W','west'} + e_ = obj.e_w; + mat = obj.A; + boundPos = 'l'; + Hi = obj.Hxi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y); + L = obj.evaluateCoefficientMatrix(L,x(1),y); + side = max(length(y)); + case {'e','E','east'} + e_ = obj.e_e; + mat = obj.A; + boundPos = 'r'; + Hi = obj.Hxi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y); + L = obj.evaluateCoefficientMatrix(L,x(end),y); + side = max(length(y)); + case {'s','S','south'} + e_ = obj.e_s; + mat = obj.B; + boundPos = 'l'; + Hi = obj.Hyi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1)); + L = obj.evaluateCoefficientMatrix(L,x,y(1)); + side = max(length(x)); + case {'n','N','north'} + e_ = obj.e_n; + mat = obj.B; + boundPos = 'r'; + Hi = obj.Hyi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end)); + L = obj.evaluateCoefficientMatrix(L,x,y(end)); + side = max(length(x)); + end + + pos = signVec(1); + zeroval = signVec(2); + neg = signVec(3); + + switch boundPos + case {'l'} + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); + + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + R = -inv(L*V_plus)*(L*V_minus); + closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; + case {'r'} + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); + R = -inv(L*V_minus)*(L*V_plus); + closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; + end + end + + % Function that diagonalizes a symbolic matrix A as A=V*D*Vi + % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign + % [d+ ] + % D = [ d0 ] + % [ d-] + % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D + function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y) + params = obj.params; + syms xs ys + [V, D]= eig(mat(params,xs,ys)); + Vi = inv(V); + xs = x; + ys = y; + + side = max(length(x),length(y)); + Dret = zeros(obj.n,side*obj.n); + Vret = zeros(obj.n,side*obj.n); + Viret = zeros(obj.n,side*obj.n); + + for ii = 1:obj.n + for jj = 1:obj.n + Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); + Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); + Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); + end + end + + D = sparse(Dret); + V = sparse(Vret); + Vi = sparse(Viret); + V = obj.evaluateCoefficientMatrix(V,x,y); + Vi = obj.evaluateCoefficientMatrix(Vi,x,y); + D = obj.evaluateCoefficientMatrix(D,x,y); + DD = diag(D); + + poseig = (DD>0); + zeroeig = (DD==0); + negeig = (DD<0); + + D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); + V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; + Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; + signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; + end + + end +end \ No newline at end of file