Mercurial > repos > public > sbplib
diff +scheme/Hypsyst2d.m @ 369:9d1fc984f40d feature/hypsyst
Added some comments and cleaned up the code a little
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Thu, 26 Jan 2017 09:57:24 +0100 |
parents | 9b3d7fc61a36 |
children | 459eeb99130f |
line wrap: on
line diff
--- a/+scheme/Hypsyst2d.m Wed Jan 25 15:37:12 2017 +0100 +++ b/+scheme/Hypsyst2d.m Thu Jan 26 09:57:24 2017 +0100 @@ -6,10 +6,10 @@ x,y % Grid X,Y % Values of x and y for each grid point order % Order accuracy for the approximation - + D % non-stabalized scheme operator - A, B, E - + A, B, E %Coefficient matrices + H % Discrete norm % Norms in the x and y directions Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. @@ -17,14 +17,14 @@ e_w, e_e, e_s, e_n params %parameters for the coeficient matrice end - - + methods + %Solving Hyperbolic systems on the form u_t=-Au_x-Bu_y-Eu function obj = Hypsyst2d(m, lim, order, A, B, E, params) default_arg('E', []) xlim = lim{1}; ylim = lim{2}; - + if length(m) == 1 m = [m m]; end @@ -32,50 +32,50 @@ obj.A=A; obj.B=B; obj.E=E; - + m_x = m(1); m_y = m(2); obj.params = params; - + ops_x = sbp.D2Standard(m_x,xlim,order); ops_y = sbp.D2Standard(m_y,ylim,order); - + obj.x = ops_x.x; obj.y = ops_y.x; - + obj.X = kr(obj.x,ones(m_y,1)); - obj.Y = kr(ones(m_x,1),obj.y); - + obj.Y = kr(ones(m_x,1),obj.y); + Aevaluated = obj.evaluateCoefficientMatrix(A, obj.X, obj.Y); Bevaluated = obj.evaluateCoefficientMatrix(B, obj.X, obj.Y); Eevaluated = obj.evaluateCoefficientMatrix(E, obj.X, obj.Y); - + obj.n = length(A(obj.params,0,0)); - + I_n = eye(obj.n);I_x = speye(m_x); obj.I_x = I_x; I_y = speye(m_y); obj.I_y = I_y; - - + + D1_x = kr(I_n, ops_x.D1, I_y); obj.Hxi = kr(I_n, ops_x.HI, I_y); D1_y = kr(I_n, I_x, ops_y.D1); obj.Hyi = kr(I_n, I_x, ops_y.HI); - + obj.e_w = kr(I_n, ops_x.e_l, I_y); obj.e_e = kr(I_n, ops_x.e_r, I_y); obj.e_s = kr(I_n, I_x, ops_y.e_l); obj.e_n = kr(I_n, I_x, ops_y.e_r); - - obj.m=m; - obj.h=[ops_x.h ops_y.h]; - obj.order=order; - - obj.D=-Aevaluated*D1_x-Bevaluated*D1_y-Eevaluated; - + + obj.m = m; + obj.h = [ops_x.h ops_y.h]; + obj.order = order; + + obj.D = -Aevaluated*D1_x-Bevaluated*D1_y-Eevaluated; + end - + % Closure functions return the opertors applied to the own doamin to close the boundary % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. @@ -85,206 +85,217 @@ default_arg('type','char'); switch type case{'c','char'} - [closure,penalty]=boundary_condition_char(obj,boundary); + [closure,penalty] = boundary_condition_char(obj,boundary); case{'general'} - [closure,penalty]=boundary_condition_general(obj,boundary,L); + [closure,penalty] = boundary_condition_general(obj,boundary,L); otherwise error('No such boundary condition') end end - + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) error('An interface function does not exist yet'); end - + function N = size(obj) N = obj.m; end - + function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y) - params=obj.params; - + params = obj.params; + if isa(mat,'function_handle') - [rows,cols]=size(mat(params,0,0)); - matVec=mat(params,X',Y'); - matVec=sparse(matVec); - side=max(length(X),length(Y)); + [rows,cols] = size(mat(params,0,0)); + matVec = mat(params,X',Y'); + matVec = sparse(matVec); + side = max(length(X),length(Y)); else - matVec=mat; - [rows,cols]=size(matVec); - side=max(length(X),length(Y)); - cols=cols/side; + matVec = mat; + [rows,cols] = size(matVec); + side = max(length(X),length(Y)); + cols = cols/side; end - ret=cell(rows,cols); - - for ii=1:rows + ret = cell(rows,cols); + + for ii = 1:rows for jj=1:cols - ret{ii,jj}=diag(matVec(ii,(jj-1)*side+1:jj*side)); + ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); end end - ret=cell2mat(ret); + ret = cell2mat(ret); end - - - function [closure, penalty]=boundary_condition_char(obj,boundary) - params=obj.params; - x=obj.x; y=obj.y; - + + %Characteristic boundary conditions + function [closure, penalty] = boundary_condition_char(obj,boundary) + params = obj.params; + x = obj.x; + y = obj.y; + switch boundary case {'w','W','west'} - e_=obj.e_w; - mat=obj.A; - boundPos='l'; - Hi=obj.Hxi; - [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); - side=max(length(y)); + e_ = obj.e_w; + mat = obj.A; + boundPos = 'l'; + Hi = obj.Hxi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y); + side = max(length(y)); case {'e','E','east'} - e_=obj.e_e; - mat=obj.A; - boundPos='r'; - Hi=obj.Hxi; - [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); - side=max(length(y)); + e_ = obj.e_e; + mat = obj.A; + boundPos = 'r'; + Hi = obj.Hxi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y); + side = max(length(y)); case {'s','S','south'} - e_=obj.e_s; - mat=obj.B; - boundPos='l'; - Hi=obj.Hyi; - [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); - side=max(length(x)); + e_ = obj.e_s; + mat = obj.B; + boundPos = 'l'; + Hi = obj.Hyi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1)); + side = max(length(x)); case {'n','N','north'} - e_=obj.e_n; - mat=obj.B; - boundPos='r'; - Hi=obj.Hyi; - [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); - side=max(length(x)); + e_ = obj.e_n; + mat = obj.B; + boundPos = 'r'; + Hi = obj.Hyi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end)); + side = max(length(x)); end - - pos=signVec(1); zeroval=signVec(2); neg=signVec(3); - + pos = signVec(1); + zeroval = signVec(2); + neg = signVec(3); + switch boundPos case {'l'} - tau=sparse(obj.n*side,pos); - Vi_plus=Vi(1:pos,:); - tau(1:pos,:)=-abs(D(1:pos,1:pos)); - closure=Hi*e_*V*tau*Vi_plus*e_'; - penalty=-Hi*e_*V*tau*Vi_plus; + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + closure = Hi*e_*V*tau*Vi_plus*e_'; + penalty = -Hi*e_*V*tau*Vi_plus; case {'r'} - tau=sparse(obj.n*side,neg); - tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); - Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); - closure=Hi*e_*V*tau*Vi_minus*e_'; - penalty=-Hi*e_*V*tau*Vi_minus; + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + closure = Hi*e_*V*tau*Vi_minus*e_'; + penalty = -Hi*e_*V*tau*Vi_minus; end end - - - function [closure,penalty]=boundary_condition_general(obj,boundary,L) - params=obj.params; - x=obj.x; y=obj.y; - + + % General boundary condition in the form Lu=g(x) + function [closure,penalty] = boundary_condition_general(obj,boundary,L) + params = obj.params; + x = obj.x; + y = obj.y; + switch boundary case {'w','W','west'} - e_=obj.e_w; - mat=obj.A; - boundPos='l'; - Hi=obj.Hxi; - [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); - L=obj.evaluateCoefficientMatrix(L,x(1),y); - side=max(length(y)); + e_ = obj.e_w; + mat = obj.A; + boundPos = 'l'; + Hi = obj.Hxi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x(1),y); + L = obj.evaluateCoefficientMatrix(L,x(1),y); + side = max(length(y)); case {'e','E','east'} - e_=obj.e_e; - mat=obj.A; - boundPos='r'; - Hi=obj.Hxi; - [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); - L=obj.evaluateCoefficientMatrix(L,x(end),y); - side=max(length(y)); + e_ = obj.e_e; + mat = obj.A; + boundPos = 'r'; + Hi = obj.Hxi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x(end),y); + L = obj.evaluateCoefficientMatrix(L,x(end),y); + side = max(length(y)); case {'s','S','south'} - e_=obj.e_s; - mat=obj.B; - boundPos='l'; - Hi=obj.Hyi; - [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); - L=obj.evaluateCoefficientMatrix(L,x,y(1)); - side=max(length(x)); + e_ = obj.e_s; + mat = obj.B; + boundPos = 'l'; + Hi = obj.Hyi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(1)); + L = obj.evaluateCoefficientMatrix(L,x,y(1)); + side = max(length(x)); case {'n','N','north'} - e_=obj.e_n; - mat=obj.B; - boundPos='r'; - Hi=obj.Hyi; - [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); - L=obj.evaluateCoefficientMatrix(L,x,y(end)); - side=max(length(x)); + e_ = obj.e_n; + mat = obj.B; + boundPos = 'r'; + Hi = obj.Hyi; + [V,Vi,D,signVec] = obj.matrixDiag(mat,x,y(end)); + L = obj.evaluateCoefficientMatrix(L,x,y(end)); + side = max(length(x)); end - - pos=signVec(1); zeroval=signVec(2); neg=signVec(3); - + + pos = signVec(1); + zeroval = signVec(2); + neg = signVec(3); + switch boundPos case {'l'} - tau=sparse(obj.n*side,pos); - Vi_plus=Vi(1:pos,:); - Vi_minus=Vi(pos+zeroval+1:obj.n*side,:); - V_plus=V(:,1:pos); - V_minus=V(:,(pos+zeroval)+1:obj.n*side); - - tau(1:pos,:)=-abs(D(1:pos,1:pos)); - R=-inv(L*V_plus)*(L*V_minus); - closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; - penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; + tau = sparse(obj.n*side,pos); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); + + tau(1:pos,:) = -abs(D(1:pos,1:pos)); + R = -inv(L*V_plus)*(L*V_minus); + closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; case {'r'} - tau=sparse(obj.n*side,neg); - tau((pos+zeroval)+1:obj.n*side,:)=-abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); - Vi_plus=Vi(1:pos,:); - Vi_minus=Vi((pos+zeroval)+1:obj.n*side,:); - - V_plus=V(:,1:pos); - V_minus=V(:,(pos+zeroval)+1:obj.n*side); - R=-inv(L*V_minus)*(L*V_plus); - closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; - penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; + tau = sparse(obj.n*side,neg); + tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); + Vi_plus = Vi(1:pos,:); + Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); + + V_plus = V(:,1:pos); + V_minus = V(:,(pos+zeroval)+1:obj.n*side); + R = -inv(L*V_minus)*(L*V_plus); + closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; + penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; end end - - - function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y) - params=obj.params; + + % Function that diagonalizes a symbolic matrix A as A=V*D*Vi + % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign + % [d+ ] + % D = [ d0 ] + % [ d-] + % signVec is a vector specifying the number of possitive, zero and negative eigenvalues of D + function [V,Vi, D,signVec] = matrixDiag(obj,mat,x,y) + params = obj.params; syms xs ys - [V, D]=eig(mat(params,xs,ys)); - Vi=inv(V); - xs=x; - ys=y; - - side=max(length(x),length(y)); - Dret=zeros(obj.n,side*obj.n); - Vret=zeros(obj.n,side*obj.n); - Viret=zeros(obj.n,side*obj.n); - for ii=1:obj.n - for jj=1:obj.n - Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); - Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); - Viret(jj,(ii-1)*side+1:side*ii)=eval(Vi(jj,ii)); + [V, D]= eig(mat(params,xs,ys)); + Vi = inv(V); + xs = x; + ys = y; + + side = max(length(x),length(y)); + Dret = zeros(obj.n,side*obj.n); + Vret = zeros(obj.n,side*obj.n); + Viret = zeros(obj.n,side*obj.n); + + for ii = 1:obj.n + for jj = 1:obj.n + Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); + Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); + Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); end end - - D=sparse(Dret); - V=sparse(Vret); - Vi=sparse(Viret); - V=obj.evaluateCoefficientMatrix(V,x,y); - Vi=obj.evaluateCoefficientMatrix(Vi,x,y); - D=obj.evaluateCoefficientMatrix(D,x,y); - DD=diag(D); + + D = sparse(Dret); + V = sparse(Vret); + Vi = sparse(Viret); + V = obj.evaluateCoefficientMatrix(V,x,y); + Vi = obj.evaluateCoefficientMatrix(Vi,x,y); + D = obj.evaluateCoefficientMatrix(D,x,y); + DD = diag(D); - poseig=(DD>0); - zeroeig=(DD==0); - negeig=(DD<0); + poseig = (DD>0); + zeroeig = (DD==0); + negeig = (DD<0); - D=diag([DD(poseig); DD(zeroeig); DD(negeig)]); - V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; - Vi=[Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; - signVec=[sum(poseig),sum(zeroeig),sum(negeig)]; + D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); + V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; + Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; + signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; end - + end end \ No newline at end of file