diff diracPrimDiscr1D.m @ 1130:99fd66ffe714 feature/laplace_curvilinear_test

Add derivative of delta functions and corresponding tests, tested for 1D.
author Martin Almquist <malmquist@stanford.edu>
date Tue, 21 May 2019 18:44:01 -0700
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/diracPrimDiscr1D.m	Tue May 21 18:44:01 2019 -0700
@@ -0,0 +1,96 @@
+% Generates discretized derivative of delta function in 1D
+function ret = diracPrimDiscr1D(x_0in, x, m_order, s_order, H)
+
+    % diracPrim satisfies one more moment condition than dirac
+    m_order = m_order + 1;
+
+    m = length(x);
+
+    % Return zeros if x0 is outside grid
+    if(x_0in < x(1) || x_0in > x(end) )
+
+        ret = zeros(size(x));
+
+    else
+
+        fnorm = diag(H);
+        eta = abs(x-x_0in);
+        tot = m_order+s_order;
+        S = [];
+        M = [];
+
+        % Get interior grid spacing
+        middle = floor(m/2);
+        h = x(middle+1) - x(middle);
+
+        poss = find(tot*h/2 >= eta);
+
+        % Ensure that poss is not too long
+        if length(poss) == (tot + 2)
+            poss = poss(2:end-1);
+        elseif length(poss) == (tot + 1)
+            poss = poss(1:end-1);
+        end
+
+        % Use first tot grid points
+        if length(poss)<tot && x_0in < x(1) + ceil(tot/2)*h;
+            index=1:tot;
+            pol=(x(1:tot)-x(1))/(x(tot)-x(1));
+            x_0=(x_0in-x(1))/(x(tot)-x(1));
+            norm=fnorm(1:tot)/h;
+
+        % Use last tot grid points
+        elseif length(poss)<tot && x_0in > x(end) - ceil(tot/2)*h;
+            index = length(x)-tot+1:length(x);
+            pol = (x(end-tot+1:end)-x(end-tot+1))/(x(end)-x(end-tot+1));
+            norm = fnorm(end-tot+1:end)/h;
+            x_0 = (x_0in-x(end-tot+1))/(x(end)-x(end-tot+1));
+
+        % Interior, compensate for round-off errors.
+        elseif length(poss) < tot
+            if poss(end)<m
+                poss = [poss; poss(end)+1];
+            else
+                poss = [poss(1)-1; poss];
+            end
+            pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1)));
+            x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1)));
+            norm = fnorm(poss)/h;
+            index = poss;
+
+        % Interior
+        else
+            pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1)));
+            x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1)));
+            norm = fnorm(poss)/h;
+            index = poss;
+        end
+
+        h_pol = pol(2)-pol(1);
+        b = zeros(m_order+s_order,1);
+
+        b(1) = 0;
+        for i = 2:m_order
+            b(i) = -(i-1)*x_0^(i-2);
+        end
+
+        for i = 1:(m_order+s_order)
+            for j = 1:m_order
+                M(j,i) = pol(i)^(j-1)*h_pol*norm(i);
+            end
+        end
+
+        for i = 1:(m_order+s_order)
+            for j = 1:s_order
+                S(j,i) = (-1)^(i-1)*pol(i)^(j-1);
+            end
+        end
+
+        A = [M;S];
+
+        d = A\b;
+        ret = x*0;
+        ret(index) = d*(h_pol/h)^2;
+    end
+
+end
\ No newline at end of file