Mercurial > repos > public > sbplib
diff diracPrimDiscr1D.m @ 1130:99fd66ffe714 feature/laplace_curvilinear_test
Add derivative of delta functions and corresponding tests, tested for 1D.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Tue, 21 May 2019 18:44:01 -0700 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/diracPrimDiscr1D.m Tue May 21 18:44:01 2019 -0700 @@ -0,0 +1,96 @@ +% Generates discretized derivative of delta function in 1D +function ret = diracPrimDiscr1D(x_0in, x, m_order, s_order, H) + + % diracPrim satisfies one more moment condition than dirac + m_order = m_order + 1; + + m = length(x); + + % Return zeros if x0 is outside grid + if(x_0in < x(1) || x_0in > x(end) ) + + ret = zeros(size(x)); + + else + + fnorm = diag(H); + eta = abs(x-x_0in); + tot = m_order+s_order; + S = []; + M = []; + + % Get interior grid spacing + middle = floor(m/2); + h = x(middle+1) - x(middle); + + poss = find(tot*h/2 >= eta); + + % Ensure that poss is not too long + if length(poss) == (tot + 2) + poss = poss(2:end-1); + elseif length(poss) == (tot + 1) + poss = poss(1:end-1); + end + + % Use first tot grid points + if length(poss)<tot && x_0in < x(1) + ceil(tot/2)*h; + index=1:tot; + pol=(x(1:tot)-x(1))/(x(tot)-x(1)); + x_0=(x_0in-x(1))/(x(tot)-x(1)); + norm=fnorm(1:tot)/h; + + % Use last tot grid points + elseif length(poss)<tot && x_0in > x(end) - ceil(tot/2)*h; + index = length(x)-tot+1:length(x); + pol = (x(end-tot+1:end)-x(end-tot+1))/(x(end)-x(end-tot+1)); + norm = fnorm(end-tot+1:end)/h; + x_0 = (x_0in-x(end-tot+1))/(x(end)-x(end-tot+1)); + + % Interior, compensate for round-off errors. + elseif length(poss) < tot + if poss(end)<m + poss = [poss; poss(end)+1]; + else + poss = [poss(1)-1; poss]; + end + pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1))); + x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1))); + norm = fnorm(poss)/h; + index = poss; + + % Interior + else + pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1))); + x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1))); + norm = fnorm(poss)/h; + index = poss; + end + + h_pol = pol(2)-pol(1); + b = zeros(m_order+s_order,1); + + b(1) = 0; + for i = 2:m_order + b(i) = -(i-1)*x_0^(i-2); + end + + for i = 1:(m_order+s_order) + for j = 1:m_order + M(j,i) = pol(i)^(j-1)*h_pol*norm(i); + end + end + + for i = 1:(m_order+s_order) + for j = 1:s_order + S(j,i) = (-1)^(i-1)*pol(i)^(j-1); + end + end + + A = [M;S]; + + d = A\b; + ret = x*0; + ret(index) = d*(h_pol/h)^2; + end + +end \ No newline at end of file