comparison diracPrimDiscr1D.m @ 1130:99fd66ffe714 feature/laplace_curvilinear_test

Add derivative of delta functions and corresponding tests, tested for 1D.
author Martin Almquist <malmquist@stanford.edu>
date Tue, 21 May 2019 18:44:01 -0700
parents
children
comparison
equal deleted inserted replaced
1129:b29892853daf 1130:99fd66ffe714
1 % Generates discretized derivative of delta function in 1D
2 function ret = diracPrimDiscr1D(x_0in, x, m_order, s_order, H)
3
4 % diracPrim satisfies one more moment condition than dirac
5 m_order = m_order + 1;
6
7 m = length(x);
8
9 % Return zeros if x0 is outside grid
10 if(x_0in < x(1) || x_0in > x(end) )
11
12 ret = zeros(size(x));
13
14 else
15
16 fnorm = diag(H);
17 eta = abs(x-x_0in);
18 tot = m_order+s_order;
19 S = [];
20 M = [];
21
22 % Get interior grid spacing
23 middle = floor(m/2);
24 h = x(middle+1) - x(middle);
25
26 poss = find(tot*h/2 >= eta);
27
28 % Ensure that poss is not too long
29 if length(poss) == (tot + 2)
30 poss = poss(2:end-1);
31 elseif length(poss) == (tot + 1)
32 poss = poss(1:end-1);
33 end
34
35 % Use first tot grid points
36 if length(poss)<tot && x_0in < x(1) + ceil(tot/2)*h;
37 index=1:tot;
38 pol=(x(1:tot)-x(1))/(x(tot)-x(1));
39 x_0=(x_0in-x(1))/(x(tot)-x(1));
40 norm=fnorm(1:tot)/h;
41
42 % Use last tot grid points
43 elseif length(poss)<tot && x_0in > x(end) - ceil(tot/2)*h;
44 index = length(x)-tot+1:length(x);
45 pol = (x(end-tot+1:end)-x(end-tot+1))/(x(end)-x(end-tot+1));
46 norm = fnorm(end-tot+1:end)/h;
47 x_0 = (x_0in-x(end-tot+1))/(x(end)-x(end-tot+1));
48
49 % Interior, compensate for round-off errors.
50 elseif length(poss) < tot
51 if poss(end)<m
52 poss = [poss; poss(end)+1];
53 else
54 poss = [poss(1)-1; poss];
55 end
56 pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1)));
57 x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1)));
58 norm = fnorm(poss)/h;
59 index = poss;
60
61 % Interior
62 else
63 pol = (x(poss)-x(poss(1)))/(x(poss(end))-x(poss(1)));
64 x_0 = (x_0in-x(poss(1)))/(x(poss(end))-x(poss(1)));
65 norm = fnorm(poss)/h;
66 index = poss;
67 end
68
69 h_pol = pol(2)-pol(1);
70 b = zeros(m_order+s_order,1);
71
72 b(1) = 0;
73 for i = 2:m_order
74 b(i) = -(i-1)*x_0^(i-2);
75 end
76
77 for i = 1:(m_order+s_order)
78 for j = 1:m_order
79 M(j,i) = pol(i)^(j-1)*h_pol*norm(i);
80 end
81 end
82
83 for i = 1:(m_order+s_order)
84 for j = 1:s_order
85 S(j,i) = (-1)^(i-1)*pol(i)^(j-1);
86 end
87 end
88
89 A = [M;S];
90
91 d = A\b;
92 ret = x*0;
93 ret(index) = d*(h_pol/h)^2;
94 end
95
96 end