Mercurial > repos > public > sbplib
diff +sbp/+implementations/d4_variable_2.m @ 312:9230c056a574 feature/beams
Fixed formatting.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 23 Sep 2016 19:14:04 +0200 |
parents | 713b125038a3 |
children | 52b4cdf27633 |
line wrap: on
line diff
--- a/+sbp/+implementations/d4_variable_2.m Fri Sep 23 14:59:55 2016 +0200 +++ b/+sbp/+implementations/d4_variable_2.m Fri Sep 23 19:14:04 2016 +0200 @@ -1,5 +1,5 @@ % Returns D2 as a function handle -function [H, HI, D1, D2, D3, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = d4_variable_2(m,h) +function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_2(m,h) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% 4:de ordn. SBP Finita differens %%% %%% operatorer framtagna av Ken Mattsson %%% @@ -7,32 +7,17 @@ %%% 6 randpunkter, diagonal norm %%% %%% %%% %%% Datum: 2013-11-11 %%% - %%% %%% - %%% %%% - %%% H (Normen) %%% - %%% D1 (approx f?rsta derivatan) %%% - %%% D2 (approx andra derivatan) %%% - %%% D3 (approx tredje derivatan) %%% - %%% D2 (approx fj?rde derivatan) %%% - %%% %%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - % M?ste ange antal punkter (m) och stegl?ngd (h) - % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r - % vi har 3de och 4de derivator i v?r PDE - % I annat fall anv?nd de "traditionella" som har noggrannare - % randsplutningar f?r D1 och D2 - - % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, - % vilket ?r n?dv?ndigt f?r stabilitet - BP = 4; if(m<2*BP) error(['Operator requires at least ' num2str(2*BP) ' grid points']); end - H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2; + H=speye(m,m); + H(1,1)=1/2; + H(m,m)=1/2; H=H*h; HI=inv(H); @@ -49,16 +34,13 @@ %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); - - e_1=sparse(m,1);e_1(1)=1; - e_m=sparse(m,1);e_m(m)=1; - + e_1=sparse(m,1); + e_1(1)=1; + e_m=sparse(m,1); + e_m(m)=1; D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - - % Second derivative, 1st order accurate at first boundary points @@ -127,7 +109,12 @@ %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); - Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; + Q3_U = [ + 0 -0.13e2/0.16e2 0.7e1/0.8e1 -0.1e1/0.16e2; + 0.13e2/0.16e2 0 -0.23e2/0.16e2 0.5e1/0.8e1; + -0.7e1/0.8e1 0.23e2/0.16e2 0 -0.17e2/0.16e2; + 0.1e1/0.16e2 -0.5e1/0.8e1 0.17e2/0.16e2 0; + ]; Q3(1:4,1:4)=Q3_U; Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); Q3=Q3/h^2; @@ -158,8 +145,12 @@ %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); - M4_U=[0.13e2 / 0.10e2 -0.12e2 / 0.5e1 0.9e1 / 0.10e2 0.1e1 / 0.5e1; -0.12e2 / 0.5e1 0.26e2 / 0.5e1 -0.16e2 / 0.5e1 0.2e1 / 0.5e1; 0.9e1 / 0.10e2 -0.16e2 / 0.5e1 0.47e2 / 0.10e2 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; - + M4_U=[ + 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; + -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; + 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; + 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; + ]; M4(1:4,1:4)=M4_U;