Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_variable_2.m @ 312:9230c056a574 feature/beams
Fixed formatting.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Fri, 23 Sep 2016 19:14:04 +0200 |
parents | 713b125038a3 |
children | 52b4cdf27633 |
comparison
equal
deleted
inserted
replaced
311:713b125038a3 | 312:9230c056a574 |
---|---|
1 % Returns D2 as a function handle | 1 % Returns D2 as a function handle |
2 function [H, HI, D1, D2, D3, D4, e_1, e_m, M4, Q, S2_1, S2_m, S3_1, S3_m, S_1, S_m] = d4_variable_2(m,h) | 2 function [H, HI, D1, D2, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_2(m,h) |
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
4 %%% 4:de ordn. SBP Finita differens %%% | 4 %%% 4:de ordn. SBP Finita differens %%% |
5 %%% operatorer framtagna av Ken Mattsson %%% | 5 %%% operatorer framtagna av Ken Mattsson %%% |
6 %%% %%% | 6 %%% %%% |
7 %%% 6 randpunkter, diagonal norm %%% | 7 %%% 6 randpunkter, diagonal norm %%% |
8 %%% %%% | 8 %%% %%% |
9 %%% Datum: 2013-11-11 %%% | 9 %%% Datum: 2013-11-11 %%% |
10 %%% %%% | |
11 %%% %%% | |
12 %%% H (Normen) %%% | |
13 %%% D1 (approx f?rsta derivatan) %%% | |
14 %%% D2 (approx andra derivatan) %%% | |
15 %%% D3 (approx tredje derivatan) %%% | |
16 %%% D2 (approx fj?rde derivatan) %%% | |
17 %%% %%% | |
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
19 | |
20 % M?ste ange antal punkter (m) och stegl?ngd (h) | |
21 % Notera att dessa opetratorer ?r framtagna f?r att anv?ndas n?r | |
22 % vi har 3de och 4de derivator i v?r PDE | |
23 % I annat fall anv?nd de "traditionella" som har noggrannare | |
24 % randsplutningar f?r D1 och D2 | |
25 | |
26 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | |
27 % vilket ?r n?dv?ndigt f?r stabilitet | |
28 | 11 |
29 BP = 4; | 12 BP = 4; |
30 if(m<2*BP) | 13 if(m<2*BP) |
31 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | 14 error(['Operator requires at least ' num2str(2*BP) ' grid points']); |
32 end | 15 end |
33 | 16 |
34 H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2; | |
35 | 17 |
18 H=speye(m,m); | |
19 H(1,1)=1/2; | |
20 H(m,m)=1/2; | |
36 | 21 |
37 H=H*h; | 22 H=H*h; |
38 HI=inv(H); | 23 HI=inv(H); |
39 | 24 |
40 | 25 |
47 diags = -d:d; | 32 diags = -d:d; |
48 Q = stripeMatrix(stencil, diags, m); | 33 Q = stripeMatrix(stencil, diags, m); |
49 | 34 |
50 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | 35 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); |
51 | 36 |
52 | 37 e_1=sparse(m,1); |
53 e_1=sparse(m,1);e_1(1)=1; | 38 e_1(1)=1; |
54 e_m=sparse(m,1);e_m(m)=1; | 39 e_m=sparse(m,1); |
55 | 40 e_m(m)=1; |
56 | 41 |
57 D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; | 42 D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; |
58 | |
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
60 | |
61 | 43 |
62 | 44 |
63 % Second derivative, 1st order accurate at first boundary points | 45 % Second derivative, 1st order accurate at first boundary points |
64 | 46 |
65 % below for constant coefficients | 47 % below for constant coefficients |
125 Q3 = stripeMatrix(stencil, diags, m); | 107 Q3 = stripeMatrix(stencil, diags, m); |
126 | 108 |
127 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | 109 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); |
128 | 110 |
129 | 111 |
130 Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; | 112 Q3_U = [ |
113 0 -0.13e2/0.16e2 0.7e1/0.8e1 -0.1e1/0.16e2; | |
114 0.13e2/0.16e2 0 -0.23e2/0.16e2 0.5e1/0.8e1; | |
115 -0.7e1/0.8e1 0.23e2/0.16e2 0 -0.17e2/0.16e2; | |
116 0.1e1/0.16e2 -0.5e1/0.8e1 0.17e2/0.16e2 0; | |
117 ]; | |
131 Q3(1:4,1:4)=Q3_U; | 118 Q3(1:4,1:4)=Q3_U; |
132 Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); | 119 Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); |
133 Q3=Q3/h^2; | 120 Q3=Q3/h^2; |
134 | 121 |
135 | 122 |
156 diags = -d:d; | 143 diags = -d:d; |
157 M4 = stripeMatrix(stencil, diags, m); | 144 M4 = stripeMatrix(stencil, diags, m); |
158 | 145 |
159 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | 146 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); |
160 | 147 |
161 M4_U=[0.13e2 / 0.10e2 -0.12e2 / 0.5e1 0.9e1 / 0.10e2 0.1e1 / 0.5e1; -0.12e2 / 0.5e1 0.26e2 / 0.5e1 -0.16e2 / 0.5e1 0.2e1 / 0.5e1; 0.9e1 / 0.10e2 -0.16e2 / 0.5e1 0.47e2 / 0.10e2 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; | 148 M4_U=[ |
162 | 149 0.13e2/0.10e2 -0.12e2/0.5e1 0.9e1/0.10e2 0.1e1/0.5e1; |
150 -0.12e2/0.5e1 0.26e2/0.5e1 -0.16e2/0.5e1 0.2e1/0.5e1; | |
151 0.9e1/0.10e2 -0.16e2/0.5e1 0.47e2/0.10e2 -0.17e2/0.5e1; | |
152 0.1e1/0.5e1 0.2e1/0.5e1 -0.17e2/0.5e1 0.29e2/0.5e1; | |
153 ]; | |
163 | 154 |
164 M4(1:4,1:4)=M4_U; | 155 M4(1:4,1:4)=M4_U; |
165 | 156 |
166 M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); | 157 M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); |
167 M4=M4/h^3; | 158 M4=M4/h^3; |