Mercurial > repos > public > sbplib
diff +sbp/+implementations/d4_lonely_6_2.m @ 325:72468bc9b63f feature/beams
Renamed some operator implementations.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 26 Sep 2016 09:55:16 +0200 |
parents | +sbp/+implementations/d4_variable_6_2.m@c0cbffcf6513 |
children | b19e142fcae1 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+sbp/+implementations/d4_lonely_6_2.m Mon Sep 26 09:55:16 2016 +0200 @@ -0,0 +1,76 @@ +function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_2(m,h) + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + %%% 6:te ordn. SBP Finita differens %%% + %%% operatorer med diagonal norm %%% + %%% Extension to variable koeff %%% + %%% %%% + %%% H (Normen) %%% + %%% D1=H^(-1)Q (approx f?rsta derivatan) %%% + %%% D2 (approx andra derivatan) %%% + %%% D2=HI*(R+C*D*S %%% + %%% %%% + %%% R=-D1'*H*C*D1-RR %%% + %%% %%% + %%% RR ?r dissipation) %%% + %%% Dissipationen uppbyggd av D4: %%% + %%% DI=D4*B*H*D4 %%% + %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + + % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator + % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te + % ordningens konvergens. Hade dock ingen fri parameter att optimera + + BP = 6; + if(m<2*BP) + error(['Operator requires at least ' num2str(2*BP) ' grid points']); + end + + % Norm + Hv = ones(m,1); + Hv(1:6) = [0.181e3/0.576e3, 0.1343e4/0.960e3, 0.293e3/0.480e3, 0.1811e4/0.1440e4, 0.289e3/0.320e3, 0.65e2/0.64e2]; + Hv(m-5:m) = rot90(Hv(1:6),2); + Hv = h*Hv; + H = spdiag(Hv, 0); + HI = spdiag(1./Hv, 0); + + + % Boundary operators + e_l = sparse(m,1); + e_l(1) = 1; + e_r = rot90(e_l, 2); + + d1_l = sparse(m,1); + d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h; + d1_r = -rot90(d1_l); + + d2_l = sparse(m,1); + d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2; + d2_r = rot90(d2_l, 2); + + d3_l = sparse(m,1); + d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3; + d3_r = -rot90(d3_l, 2); + + + % Fourth derivative, 1th order accurate at first 8 boundary points (still + % yield 5th order convergence if stable: for example u_tt = -u_xxxx + stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240]; + diags = -4:4; + M4 = stripeMatrix(stencil, diags, m); + + M4_U = [ + 0.1009e4/0.192e3 -0.7657e4/0.480e3 0.9307e4/0.480e3 -0.509e3/0.40e2 0.4621e4/0.960e3 -0.25e2/0.32e2; + -0.7657e4/0.480e3 0.49513e5/0.960e3 -0.4007e4/0.60e2 0.21799e5/0.480e3 -0.8171e4/0.480e3 0.2657e4/0.960e3; + 0.9307e4/0.480e3 -0.4007e4/0.60e2 0.1399e4/0.15e2 -0.2721e4/0.40e2 0.12703e5/0.480e3 -0.521e3/0.120e3; + -0.509e3/0.40e2 0.21799e5/0.480e3 -0.2721e4/0.40e2 0.3349e4/0.60e2 -0.389e3/0.15e2 0.559e3/0.96e2; + 0.4621e4/0.960e3 -0.8171e4/0.480e3 0.12703e5/0.480e3 -0.389e3/0.15e2 0.17857e5/0.960e3 -0.1499e4/0.160e3; + -0.25e2/0.32e2 0.2657e4/0.960e3 -0.521e3/0.120e3 0.559e3/0.96e2 -0.1499e4/0.160e3 0.2225e4/0.192e3; + ]; + + + M4(1:6,1:6) = M4_U; + M4(m-5:m,m-5:m) = rot90(M4_U, 2); + M4 = 1/h^3*M4; + + D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); +end