diff +sbp/+implementations/d4_lonely_6_2.m @ 325:72468bc9b63f feature/beams

Renamed some operator implementations.
author Jonatan Werpers <jonatan@werpers.com>
date Mon, 26 Sep 2016 09:55:16 +0200
parents +sbp/+implementations/d4_variable_6_2.m@c0cbffcf6513
children b19e142fcae1
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+sbp/+implementations/d4_lonely_6_2.m	Mon Sep 26 09:55:16 2016 +0200
@@ -0,0 +1,76 @@
+function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_2(m,h)
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+    %%% 6:te ordn. SBP Finita differens         %%%
+    %%% operatorer med diagonal norm            %%%
+    %%% Extension to variable koeff             %%%
+    %%%                                         %%%
+    %%% H           (Normen)                    %%%
+    %%% D1=H^(-1)Q  (approx f?rsta derivatan)   %%%
+    %%% D2          (approx andra derivatan)    %%%
+    %%% D2=HI*(R+C*D*S                          %%%
+    %%%                                         %%%
+    %%% R=-D1'*H*C*D1-RR                        %%%
+    %%%                                         %%%
+    %%% RR ?r dissipation)                      %%%
+    %%% Dissipationen uppbyggd av D4:           %%%
+    %%% DI=D4*B*H*D4                            %%%
+    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+    % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator
+    % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te
+    % ordningens konvergens. Hade dock ingen fri parameter att optimera
+
+    BP = 6;
+    if(m<2*BP)
+        error(['Operator requires at least ' num2str(2*BP) ' grid points']);
+    end
+
+    % Norm
+    Hv = ones(m,1);
+    Hv(1:6) = [0.181e3/0.576e3, 0.1343e4/0.960e3, 0.293e3/0.480e3, 0.1811e4/0.1440e4, 0.289e3/0.320e3, 0.65e2/0.64e2];
+    Hv(m-5:m) = rot90(Hv(1:6),2);
+    Hv = h*Hv;
+    H = spdiag(Hv, 0);
+    HI = spdiag(1./Hv, 0);
+
+
+    % Boundary operators
+    e_l = sparse(m,1);
+    e_l(1) = 1;
+    e_r = rot90(e_l, 2);
+
+    d1_l = sparse(m,1);
+    d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h;
+    d1_r = -rot90(d1_l);
+
+    d2_l = sparse(m,1);
+    d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2;
+    d2_r = rot90(d2_l, 2);
+
+    d3_l = sparse(m,1);
+    d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3;
+    d3_r = -rot90(d3_l, 2);
+
+
+    % Fourth derivative, 1th order accurate at first 8 boundary points (still
+    % yield 5th order convergence if stable: for example u_tt = -u_xxxx
+    stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240];
+    diags = -4:4;
+    M4 = stripeMatrix(stencil, diags, m);
+
+    M4_U = [
+        0.1009e4/0.192e3 -0.7657e4/0.480e3 0.9307e4/0.480e3 -0.509e3/0.40e2 0.4621e4/0.960e3 -0.25e2/0.32e2;
+        -0.7657e4/0.480e3 0.49513e5/0.960e3 -0.4007e4/0.60e2 0.21799e5/0.480e3 -0.8171e4/0.480e3 0.2657e4/0.960e3;
+        0.9307e4/0.480e3 -0.4007e4/0.60e2 0.1399e4/0.15e2 -0.2721e4/0.40e2 0.12703e5/0.480e3 -0.521e3/0.120e3;
+        -0.509e3/0.40e2 0.21799e5/0.480e3 -0.2721e4/0.40e2 0.3349e4/0.60e2 -0.389e3/0.15e2 0.559e3/0.96e2;
+        0.4621e4/0.960e3 -0.8171e4/0.480e3 0.12703e5/0.480e3 -0.389e3/0.15e2 0.17857e5/0.960e3 -0.1499e4/0.160e3;
+        -0.25e2/0.32e2 0.2657e4/0.960e3 -0.521e3/0.120e3 0.559e3/0.96e2 -0.1499e4/0.160e3 0.2225e4/0.192e3;
+    ];
+
+
+    M4(1:6,1:6) = M4_U;
+    M4(m-5:m,m-5:m) = rot90(M4_U, 2);
+    M4 = 1/h^3*M4;
+
+    D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r');
+end