Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_lonely_6_2.m @ 325:72468bc9b63f feature/beams
Renamed some operator implementations.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 26 Sep 2016 09:55:16 +0200 |
parents | +sbp/+implementations/d4_variable_6_2.m@c0cbffcf6513 |
children | b19e142fcae1 |
comparison
equal
deleted
inserted
replaced
324:c0cbffcf6513 | 325:72468bc9b63f |
---|---|
1 function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_2(m,h) | |
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
3 %%% 6:te ordn. SBP Finita differens %%% | |
4 %%% operatorer med diagonal norm %%% | |
5 %%% Extension to variable koeff %%% | |
6 %%% %%% | |
7 %%% H (Normen) %%% | |
8 %%% D1=H^(-1)Q (approx f?rsta derivatan) %%% | |
9 %%% D2 (approx andra derivatan) %%% | |
10 %%% D2=HI*(R+C*D*S %%% | |
11 %%% %%% | |
12 %%% R=-D1'*H*C*D1-RR %%% | |
13 %%% %%% | |
14 %%% RR ?r dissipation) %%% | |
15 %%% Dissipationen uppbyggd av D4: %%% | |
16 %%% DI=D4*B*H*D4 %%% | |
17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
18 | |
19 % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator | |
20 % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te | |
21 % ordningens konvergens. Hade dock ingen fri parameter att optimera | |
22 | |
23 BP = 6; | |
24 if(m<2*BP) | |
25 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | |
26 end | |
27 | |
28 % Norm | |
29 Hv = ones(m,1); | |
30 Hv(1:6) = [0.181e3/0.576e3, 0.1343e4/0.960e3, 0.293e3/0.480e3, 0.1811e4/0.1440e4, 0.289e3/0.320e3, 0.65e2/0.64e2]; | |
31 Hv(m-5:m) = rot90(Hv(1:6),2); | |
32 Hv = h*Hv; | |
33 H = spdiag(Hv, 0); | |
34 HI = spdiag(1./Hv, 0); | |
35 | |
36 | |
37 % Boundary operators | |
38 e_l = sparse(m,1); | |
39 e_l(1) = 1; | |
40 e_r = rot90(e_l, 2); | |
41 | |
42 d1_l = sparse(m,1); | |
43 d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h; | |
44 d1_r = -rot90(d1_l); | |
45 | |
46 d2_l = sparse(m,1); | |
47 d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2; | |
48 d2_r = rot90(d2_l, 2); | |
49 | |
50 d3_l = sparse(m,1); | |
51 d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3; | |
52 d3_r = -rot90(d3_l, 2); | |
53 | |
54 | |
55 % Fourth derivative, 1th order accurate at first 8 boundary points (still | |
56 % yield 5th order convergence if stable: for example u_tt = -u_xxxx | |
57 stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240]; | |
58 diags = -4:4; | |
59 M4 = stripeMatrix(stencil, diags, m); | |
60 | |
61 M4_U = [ | |
62 0.1009e4/0.192e3 -0.7657e4/0.480e3 0.9307e4/0.480e3 -0.509e3/0.40e2 0.4621e4/0.960e3 -0.25e2/0.32e2; | |
63 -0.7657e4/0.480e3 0.49513e5/0.960e3 -0.4007e4/0.60e2 0.21799e5/0.480e3 -0.8171e4/0.480e3 0.2657e4/0.960e3; | |
64 0.9307e4/0.480e3 -0.4007e4/0.60e2 0.1399e4/0.15e2 -0.2721e4/0.40e2 0.12703e5/0.480e3 -0.521e3/0.120e3; | |
65 -0.509e3/0.40e2 0.21799e5/0.480e3 -0.2721e4/0.40e2 0.3349e4/0.60e2 -0.389e3/0.15e2 0.559e3/0.96e2; | |
66 0.4621e4/0.960e3 -0.8171e4/0.480e3 0.12703e5/0.480e3 -0.389e3/0.15e2 0.17857e5/0.960e3 -0.1499e4/0.160e3; | |
67 -0.25e2/0.32e2 0.2657e4/0.960e3 -0.521e3/0.120e3 0.559e3/0.96e2 -0.1499e4/0.160e3 0.2225e4/0.192e3; | |
68 ]; | |
69 | |
70 | |
71 M4(1:6,1:6) = M4_U; | |
72 M4(m-5:m,m-5:m) = rot90(M4_U, 2); | |
73 M4 = 1/h^3*M4; | |
74 | |
75 D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); | |
76 end |