Mercurial > repos > public > sbplib
diff +scheme/Euler1d.m @ 0:48b6fb693025
Initial commit.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 17 Sep 2015 10:12:50 +0200 |
parents | |
children | 8f0c2dc747dd |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Euler1d.m Thu Sep 17 10:12:50 2015 +0200 @@ -0,0 +1,248 @@ +classdef SchmBeam2d < noname.Scheme + properties + m % Number of points in each direction, possibly a vector + N % Number of points total + h % Grid spacing + u % Grid values + x % Values of x and y for each + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + M % Derivative norm + alpha + + H % Discrete norm + Hi + e_l, e_r + + end + + methods + function obj = SchmBeam2d(m,xlim,order,gamma,opsGen) + default_arg('opsGen',@sbp.Ordinary); + default_arg('gamma', 1.4); + + [x, h] = util.get_grid(xlim{:},m_x); + + ops = opsGen(m_x,h_x,order); + + I_x = speye(m); + I_3 = speye(3); + + D1 = sparse(ops.derivatives.D1); + H = sparse(ops.norms.H); + Hi = sparse(ops.norms.HI); + e_l = sparse(ops.boundary.e_1); + e_r = sparse(ops.boundary.e_m); + + D1 = kr(D1, I_3); + + % Norms + obj.H = kr(H,I_3); + + % Boundary operators + obj.e_l = kr(e_l,I_3); + obj.e_r = kr(e_r,I_3); + + obj.m = m; + obj.h = h; + obj.order = order; + + + % Man har Q_t+F_x=0 i 1D Euler, där + % q=[rho, rho*u, e]^T + % F=[rho*u, rho*u^2+p, (e+p)*u] ^T + % p=(gamma-1)*(e-rho/2*u^2); + + + %Solving on form q_t + F_x = 0 + function o = F(q) + o = [q(2); q(2).^2/q(1) + p(q); (q(3)+p(q))*q(2)/q(1)]; + end + + % Equation of state + function o = p(q) + o = (gamma-1)*(q(3)-q(2).^2/q(1)/2); + end + + + % R = + % [sqrt(2*(gamma-1))*rho , rho , rho ; + % sqrt(2*(gamma-1))*rho*u , rho*(u+c) , rho*(u-c) ; + % sqrt(2*(gamma-1))*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c, e+(gamma-1)*(e-rho*u^2/2)-rho*u*c]); + function o = R(q) + rho = q(1); + u = q(2)/q(1); + e = q(3); + + sqrt2gamm = sqrt(2*(gamma-1)); + + o = [ + sqrt2gamm*rho , rho , rho ; + sqrt2gamm*rho*u , rho*(u+c) , rho*(u-c) ; + sqrt2gamm*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c , e+(gamma-1)*(e-rho*u^2/2)-rho*u*c + ]; + end + + function o = Fx(q) + o = zeros(size(q)); + for i = 1:3:3*m + o(i:i+2) = F(q(i:i+2)); + end + end + + + + % A=R*Lambda*inv(R), där Lambda=diag(u, u+c, u-c) (c är ljudhastigheten) + % c^2=gamma*p/rho + % function o = A(rho,u,e) + % end + + + obj.D = @Fx; + obj.u = x; + obj.x = kr(x,ones(3,1)); + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary, alpha,data) + default_arg('alpha',0); + default_arg('data',0); + + % Boundary condition on form + % w_in = w_out + g, where g is data + + [e,s] = obj.get_boundary_ops(boundary); + + tuning = 1; % ????????????????????????? + + tau = R(q)*lambda(q)*tuning; % SHOULD THIS BE abs(lambda)????? + + function closure_fun(q,t) + q_b = e * q; + end + + function penalty_fun(q,t) + end + + + + + + % tau1 < -alpha^2/gamma + + tau1 = tuning * alpha/delt; + tau4 = s*alpha; + + sig2 = tuning * alpha/gamm; + sig3 = -s*alpha; + + tau = tau1*e+tau4*d3; + sig = sig2*d1+sig3*d2; + + closure = halfnorm_inv*(tau*e' + sig*d1'); + + pp_e = halfnorm_inv*tau; + pp_d = halfnorm_inv*sig; + switch class(data) + case 'double' + penalty_e = pp_e*data; + penalty_d = pp_d*data; + case 'function_handle' + penalty_e = @(t)pp_e*data(t); + penalty_d = @(t)pp_d*data(t); + otherwise + error('Wierd data argument!') + end + + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary); + [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + tuning = 2; + + alpha_u = obj.alpha; + alpha_v = neighbour_scheme.alpha; + + tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; + % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning; + tau4 = s_u*alpha_u/2; + + sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; + sig3 = -s_u*alpha_u/2; + + phi2 = s_u*1/2; + + psi1 = -s_u*1/2; + + tau = tau1*e_u + tau4*d3_u; + sig = sig2*d1_u + sig3*d2_u ; + phi = phi2*d1_u ; + psi = psi1*e_u ; + + closure = halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); + penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary) + switch boundary + case 'w' + e = obj.e_w; + d1 = obj.d1_w; + d2 = obj.d2_w; + d3 = obj.d3_w; + s = -1; + gamm = obj.gamm_x; + delt = obj.delt_x; + halfnorm_inv = obj.Hix; + case 'e' + e = obj.e_e; + d1 = obj.d1_e; + d2 = obj.d2_e; + d3 = obj.d3_e; + s = 1; + gamm = obj.gamm_x; + delt = obj.delt_x; + halfnorm_inv = obj.Hix; + case 's' + e = obj.e_s; + d1 = obj.d1_s; + d2 = obj.d2_s; + d3 = obj.d3_s; + s = -1; + gamm = obj.gamm_y; + delt = obj.delt_y; + halfnorm_inv = obj.Hiy; + case 'n' + e = obj.e_n; + d1 = obj.d1_n; + d2 = obj.d2_n; + d3 = obj.d3_n; + s = 1; + gamm = obj.gamm_y; + delt = obj.delt_y; + halfnorm_inv = obj.Hiy; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = prod(obj.m); + end + + end +end