Mercurial > repos > public > sbplib
comparison +scheme/Euler1d.m @ 0:48b6fb693025
Initial commit.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 17 Sep 2015 10:12:50 +0200 |
parents | |
children | 8f0c2dc747dd |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:48b6fb693025 |
---|---|
1 classdef SchmBeam2d < noname.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 N % Number of points total | |
5 h % Grid spacing | |
6 u % Grid values | |
7 x % Values of x and y for each | |
8 order % Order accuracy for the approximation | |
9 | |
10 D % non-stabalized scheme operator | |
11 M % Derivative norm | |
12 alpha | |
13 | |
14 H % Discrete norm | |
15 Hi | |
16 e_l, e_r | |
17 | |
18 end | |
19 | |
20 methods | |
21 function obj = SchmBeam2d(m,xlim,order,gamma,opsGen) | |
22 default_arg('opsGen',@sbp.Ordinary); | |
23 default_arg('gamma', 1.4); | |
24 | |
25 [x, h] = util.get_grid(xlim{:},m_x); | |
26 | |
27 ops = opsGen(m_x,h_x,order); | |
28 | |
29 I_x = speye(m); | |
30 I_3 = speye(3); | |
31 | |
32 D1 = sparse(ops.derivatives.D1); | |
33 H = sparse(ops.norms.H); | |
34 Hi = sparse(ops.norms.HI); | |
35 e_l = sparse(ops.boundary.e_1); | |
36 e_r = sparse(ops.boundary.e_m); | |
37 | |
38 D1 = kr(D1, I_3); | |
39 | |
40 % Norms | |
41 obj.H = kr(H,I_3); | |
42 | |
43 % Boundary operators | |
44 obj.e_l = kr(e_l,I_3); | |
45 obj.e_r = kr(e_r,I_3); | |
46 | |
47 obj.m = m; | |
48 obj.h = h; | |
49 obj.order = order; | |
50 | |
51 | |
52 % Man har Q_t+F_x=0 i 1D Euler, där | |
53 % q=[rho, rho*u, e]^T | |
54 % F=[rho*u, rho*u^2+p, (e+p)*u] ^T | |
55 % p=(gamma-1)*(e-rho/2*u^2); | |
56 | |
57 | |
58 %Solving on form q_t + F_x = 0 | |
59 function o = F(q) | |
60 o = [q(2); q(2).^2/q(1) + p(q); (q(3)+p(q))*q(2)/q(1)]; | |
61 end | |
62 | |
63 % Equation of state | |
64 function o = p(q) | |
65 o = (gamma-1)*(q(3)-q(2).^2/q(1)/2); | |
66 end | |
67 | |
68 | |
69 % R = | |
70 % [sqrt(2*(gamma-1))*rho , rho , rho ; | |
71 % sqrt(2*(gamma-1))*rho*u , rho*(u+c) , rho*(u-c) ; | |
72 % sqrt(2*(gamma-1))*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c, e+(gamma-1)*(e-rho*u^2/2)-rho*u*c]); | |
73 function o = R(q) | |
74 rho = q(1); | |
75 u = q(2)/q(1); | |
76 e = q(3); | |
77 | |
78 sqrt2gamm = sqrt(2*(gamma-1)); | |
79 | |
80 o = [ | |
81 sqrt2gamm*rho , rho , rho ; | |
82 sqrt2gamm*rho*u , rho*(u+c) , rho*(u-c) ; | |
83 sqrt2gamm*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c , e+(gamma-1)*(e-rho*u^2/2)-rho*u*c | |
84 ]; | |
85 end | |
86 | |
87 function o = Fx(q) | |
88 o = zeros(size(q)); | |
89 for i = 1:3:3*m | |
90 o(i:i+2) = F(q(i:i+2)); | |
91 end | |
92 end | |
93 | |
94 | |
95 | |
96 % A=R*Lambda*inv(R), där Lambda=diag(u, u+c, u-c) (c är ljudhastigheten) | |
97 % c^2=gamma*p/rho | |
98 % function o = A(rho,u,e) | |
99 % end | |
100 | |
101 | |
102 obj.D = @Fx; | |
103 obj.u = x; | |
104 obj.x = kr(x,ones(3,1)); | |
105 end | |
106 | |
107 | |
108 % Closure functions return the opertors applied to the own doamin to close the boundary | |
109 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
110 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
111 % type is a string specifying the type of boundary condition if there are several. | |
112 % data is a function returning the data that should be applied at the boundary. | |
113 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
114 % neighbour_boundary is a string specifying which boundary to interface to. | |
115 function [closure, penalty] = boundary_condition(obj,boundary, alpha,data) | |
116 default_arg('alpha',0); | |
117 default_arg('data',0); | |
118 | |
119 % Boundary condition on form | |
120 % w_in = w_out + g, where g is data | |
121 | |
122 [e,s] = obj.get_boundary_ops(boundary); | |
123 | |
124 tuning = 1; % ????????????????????????? | |
125 | |
126 tau = R(q)*lambda(q)*tuning; % SHOULD THIS BE abs(lambda)????? | |
127 | |
128 function closure_fun(q,t) | |
129 q_b = e * q; | |
130 end | |
131 | |
132 function penalty_fun(q,t) | |
133 end | |
134 | |
135 | |
136 | |
137 | |
138 | |
139 % tau1 < -alpha^2/gamma | |
140 | |
141 tau1 = tuning * alpha/delt; | |
142 tau4 = s*alpha; | |
143 | |
144 sig2 = tuning * alpha/gamm; | |
145 sig3 = -s*alpha; | |
146 | |
147 tau = tau1*e+tau4*d3; | |
148 sig = sig2*d1+sig3*d2; | |
149 | |
150 closure = halfnorm_inv*(tau*e' + sig*d1'); | |
151 | |
152 pp_e = halfnorm_inv*tau; | |
153 pp_d = halfnorm_inv*sig; | |
154 switch class(data) | |
155 case 'double' | |
156 penalty_e = pp_e*data; | |
157 penalty_d = pp_d*data; | |
158 case 'function_handle' | |
159 penalty_e = @(t)pp_e*data(t); | |
160 penalty_d = @(t)pp_d*data(t); | |
161 otherwise | |
162 error('Wierd data argument!') | |
163 end | |
164 | |
165 end | |
166 | |
167 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
168 % u denotes the solution in the own domain | |
169 % v denotes the solution in the neighbour domain | |
170 [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary); | |
171 [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); | |
172 | |
173 tuning = 2; | |
174 | |
175 alpha_u = obj.alpha; | |
176 alpha_v = neighbour_scheme.alpha; | |
177 | |
178 tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning; | |
179 % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning; | |
180 tau4 = s_u*alpha_u/2; | |
181 | |
182 sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning; | |
183 sig3 = -s_u*alpha_u/2; | |
184 | |
185 phi2 = s_u*1/2; | |
186 | |
187 psi1 = -s_u*1/2; | |
188 | |
189 tau = tau1*e_u + tau4*d3_u; | |
190 sig = sig2*d1_u + sig3*d2_u ; | |
191 phi = phi2*d1_u ; | |
192 psi = psi1*e_u ; | |
193 | |
194 closure = halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u'); | |
195 penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v'); | |
196 end | |
197 | |
198 % Ruturns the boundary ops and sign for the boundary specified by the string boundary. | |
199 % The right boundary is considered the positive boundary | |
200 function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary) | |
201 switch boundary | |
202 case 'w' | |
203 e = obj.e_w; | |
204 d1 = obj.d1_w; | |
205 d2 = obj.d2_w; | |
206 d3 = obj.d3_w; | |
207 s = -1; | |
208 gamm = obj.gamm_x; | |
209 delt = obj.delt_x; | |
210 halfnorm_inv = obj.Hix; | |
211 case 'e' | |
212 e = obj.e_e; | |
213 d1 = obj.d1_e; | |
214 d2 = obj.d2_e; | |
215 d3 = obj.d3_e; | |
216 s = 1; | |
217 gamm = obj.gamm_x; | |
218 delt = obj.delt_x; | |
219 halfnorm_inv = obj.Hix; | |
220 case 's' | |
221 e = obj.e_s; | |
222 d1 = obj.d1_s; | |
223 d2 = obj.d2_s; | |
224 d3 = obj.d3_s; | |
225 s = -1; | |
226 gamm = obj.gamm_y; | |
227 delt = obj.delt_y; | |
228 halfnorm_inv = obj.Hiy; | |
229 case 'n' | |
230 e = obj.e_n; | |
231 d1 = obj.d1_n; | |
232 d2 = obj.d2_n; | |
233 d3 = obj.d3_n; | |
234 s = 1; | |
235 gamm = obj.gamm_y; | |
236 delt = obj.delt_y; | |
237 halfnorm_inv = obj.Hiy; | |
238 otherwise | |
239 error('No such boundary: boundary = %s',boundary); | |
240 end | |
241 end | |
242 | |
243 function N = size(obj) | |
244 N = prod(obj.m); | |
245 end | |
246 | |
247 end | |
248 end |