Mercurial > repos > public > sbplib
diff +scheme/Elastic2dVariable.m @ 905:459eeb99130f feature/utux2D
Include type as (optional) input parameter in the interface method of all schemes.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Thu, 22 Nov 2018 22:03:44 -0800 |
parents | 60eb7f46d8d9 |
children | b9c98661ff5d |
line wrap: on
line diff
--- a/+scheme/Elastic2dVariable.m Thu Nov 22 22:03:06 2018 -0800 +++ b/+scheme/Elastic2dVariable.m Thu Nov 22 22:03:44 2018 -0800 @@ -1,7 +1,7 @@ classdef Elastic2dVariable < scheme.Scheme % Discretizes the elastic wave equation: -% rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i +% rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i % opSet should be cell array of opSets, one per dimension. This % is useful if we have periodic BC in one direction. @@ -37,7 +37,7 @@ e_l, e_r d1_l, d1_r % Normal derivatives at the boundary E % E{i}^T picks out component i - + H_boundary % Boundary inner products % Kroneckered norms and coefficients @@ -223,14 +223,14 @@ tau_l{j}{i} = sparse(m_tot,dim*m_tot); tau_r{j}{i} = sparse(m_tot,dim*m_tot); for k = 1:dim - T_l{j}{i,k} = ... + T_l{j}{i,k} = ... -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... - -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... + -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... -d(i,k)*MU*e_l{j}*d1_l{j}'; - T_r{j}{i,k} = ... + T_r{j}{i,k} = ... d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... - +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... + +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... +d(i,k)*MU*e_r{j}*d1_r{j}'; tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; @@ -271,7 +271,7 @@ default_arg('parameter', []); % j is the coordinate direction of the boundary - % nj: outward unit normal component. + % nj: outward unit normal component. % nj = -1 for west, south, bottom boundaries % nj = 1 for east, north, top boundaries [j, nj] = obj.get_boundary_number(boundary); @@ -329,20 +329,20 @@ db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... + d(i,j)* a_mu_i*MU ... - + db(i,j)*a_mu_ij*MU ); + + db(i,j)*a_mu_ij*MU ); % Loop over components that Dirichlet penalties end up on for i = 1:dim C = T{k,i}; A = -d(i,k)*alpha(i,j); B = A + C; - closure = closure + E{i}*RHOi*Hi*B'*e{j}*H_gamma*(e{j}'*E{k}' ); + closure = closure + E{i}*RHOi*Hi*B'*e{j}*H_gamma*(e{j}'*E{k}' ); penalty{k} = penalty{k} - E{i}*RHOi*Hi*B'*e{j}*H_gamma; - end + end % Free boundary condition case {'F','f','Free','free','traction','Traction','t','T'} - closure = closure - E{k}*RHOi*Hi*e{j}*H_gamma* (e{j}'*tau{k} ); + closure = closure - E{k}*RHOi*Hi*e{j}*H_gamma* (e{j}'*tau{k} ); penalty{k} = penalty{k} + E{k}*RHOi*Hi*e{j}*H_gamma; % Unknown boundary condition @@ -352,7 +352,7 @@ end end - function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) % u denotes the solution in the own domain % v denotes the solution in the neighbour domain tuning = 1.2;