Mercurial > repos > public > sbplib
comparison +scheme/Elastic2dVariable.m @ 905:459eeb99130f feature/utux2D
Include type as (optional) input parameter in the interface method of all schemes.
author | Martin Almquist <malmquist@stanford.edu> |
---|---|
date | Thu, 22 Nov 2018 22:03:44 -0800 |
parents | 60eb7f46d8d9 |
children | b9c98661ff5d |
comparison
equal
deleted
inserted
replaced
904:14b093a344eb | 905:459eeb99130f |
---|---|
1 classdef Elastic2dVariable < scheme.Scheme | 1 classdef Elastic2dVariable < scheme.Scheme |
2 | 2 |
3 % Discretizes the elastic wave equation: | 3 % Discretizes the elastic wave equation: |
4 % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i | 4 % rho u_{i,tt} = di lambda dj u_j + dj mu di u_j + dj mu dj u_i |
5 % opSet should be cell array of opSets, one per dimension. This | 5 % opSet should be cell array of opSets, one per dimension. This |
6 % is useful if we have periodic BC in one direction. | 6 % is useful if we have periodic BC in one direction. |
7 | 7 |
8 properties | 8 properties |
9 m % Number of points in each direction, possibly a vector | 9 m % Number of points in each direction, possibly a vector |
35 gamma % Borrowing constant for d1 from M | 35 gamma % Borrowing constant for d1 from M |
36 H11 % First element of H | 36 H11 % First element of H |
37 e_l, e_r | 37 e_l, e_r |
38 d1_l, d1_r % Normal derivatives at the boundary | 38 d1_l, d1_r % Normal derivatives at the boundary |
39 E % E{i}^T picks out component i | 39 E % E{i}^T picks out component i |
40 | 40 |
41 H_boundary % Boundary inner products | 41 H_boundary % Boundary inner products |
42 | 42 |
43 % Kroneckered norms and coefficients | 43 % Kroneckered norms and coefficients |
44 RHOi_kron | 44 RHOi_kron |
45 Hi_kron | 45 Hi_kron |
221 % Loop over components | 221 % Loop over components |
222 for i = 1:dim | 222 for i = 1:dim |
223 tau_l{j}{i} = sparse(m_tot,dim*m_tot); | 223 tau_l{j}{i} = sparse(m_tot,dim*m_tot); |
224 tau_r{j}{i} = sparse(m_tot,dim*m_tot); | 224 tau_r{j}{i} = sparse(m_tot,dim*m_tot); |
225 for k = 1:dim | 225 for k = 1:dim |
226 T_l{j}{i,k} = ... | 226 T_l{j}{i,k} = ... |
227 -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... | 227 -d(i,j)*LAMBDA*(d(i,k)*e_l{k}*d1_l{k}' + db(i,k)*D1{k})... |
228 -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... | 228 -d(j,k)*MU*(d(i,j)*e_l{i}*d1_l{i}' + db(i,j)*D1{i})... |
229 -d(i,k)*MU*e_l{j}*d1_l{j}'; | 229 -d(i,k)*MU*e_l{j}*d1_l{j}'; |
230 | 230 |
231 T_r{j}{i,k} = ... | 231 T_r{j}{i,k} = ... |
232 d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... | 232 d(i,j)*LAMBDA*(d(i,k)*e_r{k}*d1_r{k}' + db(i,k)*D1{k})... |
233 +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... | 233 +d(j,k)*MU*(d(i,j)*e_r{i}*d1_r{i}' + db(i,j)*D1{i})... |
234 +d(i,k)*MU*e_r{j}*d1_r{j}'; | 234 +d(i,k)*MU*e_r{j}*d1_r{j}'; |
235 | 235 |
236 tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; | 236 tau_l{j}{i} = tau_l{j}{i} + T_l{j}{i,k}*E{k}'; |
237 tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; | 237 tau_r{j}{i} = tau_r{j}{i} + T_r{j}{i,k}*E{k}'; |
238 end | 238 end |
269 function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) | 269 function [closure, penalty] = boundary_condition(obj, boundary, type, parameter) |
270 default_arg('type',{'free','free'}); | 270 default_arg('type',{'free','free'}); |
271 default_arg('parameter', []); | 271 default_arg('parameter', []); |
272 | 272 |
273 % j is the coordinate direction of the boundary | 273 % j is the coordinate direction of the boundary |
274 % nj: outward unit normal component. | 274 % nj: outward unit normal component. |
275 % nj = -1 for west, south, bottom boundaries | 275 % nj = -1 for west, south, bottom boundaries |
276 % nj = 1 for east, north, top boundaries | 276 % nj = 1 for east, north, top boundaries |
277 [j, nj] = obj.get_boundary_number(boundary); | 277 [j, nj] = obj.get_boundary_number(boundary); |
278 switch nj | 278 switch nj |
279 case 1 | 279 case 1 |
327 | 327 |
328 d = @kroneckerDelta; % Kronecker delta | 328 d = @kroneckerDelta; % Kronecker delta |
329 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta | 329 db = @(i,j) 1-d(i,j); % Logical not of Kronecker delta |
330 alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... | 330 alpha = @(i,j) tuning*( d(i,j)* a_lambda*LAMBDA ... |
331 + d(i,j)* a_mu_i*MU ... | 331 + d(i,j)* a_mu_i*MU ... |
332 + db(i,j)*a_mu_ij*MU ); | 332 + db(i,j)*a_mu_ij*MU ); |
333 | 333 |
334 % Loop over components that Dirichlet penalties end up on | 334 % Loop over components that Dirichlet penalties end up on |
335 for i = 1:dim | 335 for i = 1:dim |
336 C = T{k,i}; | 336 C = T{k,i}; |
337 A = -d(i,k)*alpha(i,j); | 337 A = -d(i,k)*alpha(i,j); |
338 B = A + C; | 338 B = A + C; |
339 closure = closure + E{i}*RHOi*Hi*B'*e{j}*H_gamma*(e{j}'*E{k}' ); | 339 closure = closure + E{i}*RHOi*Hi*B'*e{j}*H_gamma*(e{j}'*E{k}' ); |
340 penalty{k} = penalty{k} - E{i}*RHOi*Hi*B'*e{j}*H_gamma; | 340 penalty{k} = penalty{k} - E{i}*RHOi*Hi*B'*e{j}*H_gamma; |
341 end | 341 end |
342 | 342 |
343 % Free boundary condition | 343 % Free boundary condition |
344 case {'F','f','Free','free','traction','Traction','t','T'} | 344 case {'F','f','Free','free','traction','Traction','t','T'} |
345 closure = closure - E{k}*RHOi*Hi*e{j}*H_gamma* (e{j}'*tau{k} ); | 345 closure = closure - E{k}*RHOi*Hi*e{j}*H_gamma* (e{j}'*tau{k} ); |
346 penalty{k} = penalty{k} + E{k}*RHOi*Hi*e{j}*H_gamma; | 346 penalty{k} = penalty{k} + E{k}*RHOi*Hi*e{j}*H_gamma; |
347 | 347 |
348 % Unknown boundary condition | 348 % Unknown boundary condition |
349 otherwise | 349 otherwise |
350 error('No such boundary condition: type = %s',type); | 350 error('No such boundary condition: type = %s',type); |
351 end | 351 end |
352 end | 352 end |
353 end | 353 end |
354 | 354 |
355 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | 355 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary,type) |
356 % u denotes the solution in the own domain | 356 % u denotes the solution in the own domain |
357 % v denotes the solution in the neighbour domain | 357 % v denotes the solution in the neighbour domain |
358 tuning = 1.2; | 358 tuning = 1.2; |
359 % tuning = 20.2; | 359 % tuning = 20.2; |
360 error('Interface not implemented'); | 360 error('Interface not implemented'); |