diff +scheme/Utux2D.m @ 591:39554f2de783 feature/utux2D

Add Utux2D scheme
author Martin Almquist <martin.almquist@it.uu.se>
date Mon, 11 Sep 2017 14:12:54 +0200
parents
children 2a2f34778ded
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Utux2D.m	Mon Sep 11 14:12:54 2017 +0200
@@ -0,0 +1,153 @@
+classdef Utux2D < scheme.Scheme
+   properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+        grid % Grid
+        order % Order accuracy for the approximation
+        v0 % Initial data
+        
+        a % Wave speed a = [a1, a2];
+
+        H % Discrete norm
+        Hi, Hx, Hy, Hxi, Hyi
+
+        % Derivatives
+        Dx, Dy
+        
+        % Boundary operators
+        e_w, e_e, e_s, e_n
+        
+        D % Total discrete operator
+        
+    end
+
+
+    methods 
+         function obj = Utux2D(g ,order, opSet, a)
+             
+            default_arg('a',1/sqrt(2)*[1, 1]); 
+            default_arg('opSet',@sbp.D2Standard);
+            assert(isa(g, 'grid.Cartesian'))
+             
+            m = g.size();
+            m_x = m(1);
+            m_y = m(2);
+            m_tot = g.N();
+
+            xlim = g.x{1};
+            ylim = g.x{2};
+            obj.grid = g;
+
+            % Operator sets
+            ops_x = opSet(m_x, xlim, order);
+            ops_y = opSet(m_y, ylim, order);
+            Ix = speye(m_x);
+            Iy = speye(m_y);
+            
+            % Norms
+            Hx = ops_x.H;
+            Hy = ops_y.H;
+            Hxi = ops_x.HI;
+            Hyi = ops_y.HI;
+            obj.H = kron(Hx,Hy);
+            obj.Hi = kron(Hxi,Hyi);
+            obj.Hx = kron(Hx,Iy);
+            obj.Hy = kron(Ix,Hy);
+            obj.Hxi = kron(Hxi,Iy);
+            obj.Hyi = kron(Ix,Hyi);
+            
+            % Derivatives
+            Dx = ops_x.D1;
+            Dy = ops_y.D1;
+            obj.Dx = kron(Dx,Iy);
+            obj.Dy = kron(Ix,Dy);
+           
+            % Boundary operators
+            obj.e_w = kr(ops_x.e_l, Iy);
+            obj.e_e = kr(ops_x.e_r, Iy);
+            obj.e_s = kr(Ix, ops_y.e_l);
+            obj.e_n = kr(Ix, ops_y.e_r);
+
+            obj.m = m;
+            obj.h = [ops_x.h ops_y.h];
+            obj.order = order;
+            
+            obj.D = -(a(1)*obj.Dx + a(2)*obj.Dy);
+
+        end
+        % Closure functions return the opertors applied to the own domain to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj,boundary,type)
+            default_arg('type','dirichlet');
+            
+            sigma = -1; % Scalar penalty parameter
+            switch boundary
+                case {'w','W','west','West'}
+                    tau = sigma*obj.a(1)*obj.e_w*obj.Hy;
+                    closure = obj.Hi*tau*obj.e_w';
+                    
+                case {'s','S','south','South'}
+                    tau = sigma*pbj.a(2)*obj.e_s*obj.Hx;
+                    closure = obj.Hi*tau*obj.e_s';
+            end  
+            penalty = -obj.Hi*tau;
+                
+         end
+          
+         function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+             
+             % Get neighbour boundary operator
+             switch neighbour_boundary
+                 case {'e','E','east','East'}
+                     e_neighbour = neighbour_scheme.e_e;
+                 case {'w','W','west','West'}
+                     e_neighbour = neighbour_scheme.e_w;
+                 case {'n','N','north','North'}
+                     e_neighbour = neighbour_scheme.e_n;
+                 case {'s','S','south','South'}
+                     e_neighbour = neighbour_scheme.e_s;
+             end
+             
+             % Upwind coupling
+             sigma_ds = -1; %"Downstream" penalty
+             sigma_us = 0; %"Upstream" penalty
+             
+             switch boundary
+                 case {'w','W','west','West'}
+                     tau = sigma_ds*obj.a(1)*obj.e_w*obj.Hy;
+                     closure = obj.Hi*tau*obj.e_w';       
+                 case {'e','E','east','East'}
+                     tau = sigma_us*obj.a(1)*obj.e_e*obj.Hy;
+                     closure = obj.Hi*tau*obj.e_e';
+                 case {'s','S','south','South'}
+                     tau = sigma_ds*obj.a(2)*obj.e_s*obj.Hx;
+                     closure = obj.Hi*tau*obj.e_s'; 
+                 case {'n','N','north','North'}
+                     tau = sigma_us*obj.a(2)*obj.e_n*obj.Hx;
+                     closure = obj.Hi*tau*obj.e_n';
+             end
+             penalty = -obj.Hi*tau*e_neighbour';
+                 
+         end
+      
+        function N = size(obj)
+            N = obj.m;
+        end
+
+    end
+
+    methods(Static)
+        % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u
+        % and bound_v of scheme schm_v.
+        %   [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l')
+        function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v)
+            [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v);
+            [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u);
+        end
+    end
+end
\ No newline at end of file