Mercurial > repos > public > sbplib
comparison +scheme/Utux2D.m @ 591:39554f2de783 feature/utux2D
Add Utux2D scheme
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Mon, 11 Sep 2017 14:12:54 +0200 |
parents | |
children | 2a2f34778ded |
comparison
equal
deleted
inserted
replaced
573:efe2dbf9796e | 591:39554f2de783 |
---|---|
1 classdef Utux2D < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 h % Grid spacing | |
5 grid % Grid | |
6 order % Order accuracy for the approximation | |
7 v0 % Initial data | |
8 | |
9 a % Wave speed a = [a1, a2]; | |
10 | |
11 H % Discrete norm | |
12 Hi, Hx, Hy, Hxi, Hyi | |
13 | |
14 % Derivatives | |
15 Dx, Dy | |
16 | |
17 % Boundary operators | |
18 e_w, e_e, e_s, e_n | |
19 | |
20 D % Total discrete operator | |
21 | |
22 end | |
23 | |
24 | |
25 methods | |
26 function obj = Utux2D(g ,order, opSet, a) | |
27 | |
28 default_arg('a',1/sqrt(2)*[1, 1]); | |
29 default_arg('opSet',@sbp.D2Standard); | |
30 assert(isa(g, 'grid.Cartesian')) | |
31 | |
32 m = g.size(); | |
33 m_x = m(1); | |
34 m_y = m(2); | |
35 m_tot = g.N(); | |
36 | |
37 xlim = g.x{1}; | |
38 ylim = g.x{2}; | |
39 obj.grid = g; | |
40 | |
41 % Operator sets | |
42 ops_x = opSet(m_x, xlim, order); | |
43 ops_y = opSet(m_y, ylim, order); | |
44 Ix = speye(m_x); | |
45 Iy = speye(m_y); | |
46 | |
47 % Norms | |
48 Hx = ops_x.H; | |
49 Hy = ops_y.H; | |
50 Hxi = ops_x.HI; | |
51 Hyi = ops_y.HI; | |
52 obj.H = kron(Hx,Hy); | |
53 obj.Hi = kron(Hxi,Hyi); | |
54 obj.Hx = kron(Hx,Iy); | |
55 obj.Hy = kron(Ix,Hy); | |
56 obj.Hxi = kron(Hxi,Iy); | |
57 obj.Hyi = kron(Ix,Hyi); | |
58 | |
59 % Derivatives | |
60 Dx = ops_x.D1; | |
61 Dy = ops_y.D1; | |
62 obj.Dx = kron(Dx,Iy); | |
63 obj.Dy = kron(Ix,Dy); | |
64 | |
65 % Boundary operators | |
66 obj.e_w = kr(ops_x.e_l, Iy); | |
67 obj.e_e = kr(ops_x.e_r, Iy); | |
68 obj.e_s = kr(Ix, ops_y.e_l); | |
69 obj.e_n = kr(Ix, ops_y.e_r); | |
70 | |
71 obj.m = m; | |
72 obj.h = [ops_x.h ops_y.h]; | |
73 obj.order = order; | |
74 | |
75 obj.D = -(a(1)*obj.Dx + a(2)*obj.Dy); | |
76 | |
77 end | |
78 % Closure functions return the opertors applied to the own domain to close the boundary | |
79 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
80 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
81 % type is a string specifying the type of boundary condition if there are several. | |
82 % data is a function returning the data that should be applied at the boundary. | |
83 % neighbour_scheme is an instance of Scheme that should be interfaced to. | |
84 % neighbour_boundary is a string specifying which boundary to interface to. | |
85 function [closure, penalty] = boundary_condition(obj,boundary,type) | |
86 default_arg('type','dirichlet'); | |
87 | |
88 sigma = -1; % Scalar penalty parameter | |
89 switch boundary | |
90 case {'w','W','west','West'} | |
91 tau = sigma*obj.a(1)*obj.e_w*obj.Hy; | |
92 closure = obj.Hi*tau*obj.e_w'; | |
93 | |
94 case {'s','S','south','South'} | |
95 tau = sigma*pbj.a(2)*obj.e_s*obj.Hx; | |
96 closure = obj.Hi*tau*obj.e_s'; | |
97 end | |
98 penalty = -obj.Hi*tau; | |
99 | |
100 end | |
101 | |
102 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
103 | |
104 % Get neighbour boundary operator | |
105 switch neighbour_boundary | |
106 case {'e','E','east','East'} | |
107 e_neighbour = neighbour_scheme.e_e; | |
108 case {'w','W','west','West'} | |
109 e_neighbour = neighbour_scheme.e_w; | |
110 case {'n','N','north','North'} | |
111 e_neighbour = neighbour_scheme.e_n; | |
112 case {'s','S','south','South'} | |
113 e_neighbour = neighbour_scheme.e_s; | |
114 end | |
115 | |
116 % Upwind coupling | |
117 sigma_ds = -1; %"Downstream" penalty | |
118 sigma_us = 0; %"Upstream" penalty | |
119 | |
120 switch boundary | |
121 case {'w','W','west','West'} | |
122 tau = sigma_ds*obj.a(1)*obj.e_w*obj.Hy; | |
123 closure = obj.Hi*tau*obj.e_w'; | |
124 case {'e','E','east','East'} | |
125 tau = sigma_us*obj.a(1)*obj.e_e*obj.Hy; | |
126 closure = obj.Hi*tau*obj.e_e'; | |
127 case {'s','S','south','South'} | |
128 tau = sigma_ds*obj.a(2)*obj.e_s*obj.Hx; | |
129 closure = obj.Hi*tau*obj.e_s'; | |
130 case {'n','N','north','North'} | |
131 tau = sigma_us*obj.a(2)*obj.e_n*obj.Hx; | |
132 closure = obj.Hi*tau*obj.e_n'; | |
133 end | |
134 penalty = -obj.Hi*tau*e_neighbour'; | |
135 | |
136 end | |
137 | |
138 function N = size(obj) | |
139 N = obj.m; | |
140 end | |
141 | |
142 end | |
143 | |
144 methods(Static) | |
145 % Calculates the matrices needed for the inteface coupling between boundary bound_u of scheme schm_u | |
146 % and bound_v of scheme schm_v. | |
147 % [uu, uv, vv, vu] = inteface_coupling(A,'r',B,'l') | |
148 function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) | |
149 [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); | |
150 [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); | |
151 end | |
152 end | |
153 end |