Mercurial > repos > public > sbplib
diff +scheme/Laplace1D.m @ 896:09c5fbc783d3
Rename and mordernize scheme.Wave to scheme.Laplace1d. Not fully converted
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 22 Nov 2018 07:58:11 +0100 |
parents | +scheme/Wave.m@cb2b12246b7e |
children | bd79326ebcd0 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Laplace1D.m Thu Nov 22 07:58:11 2018 +0100 @@ -0,0 +1,171 @@ +classdef Laplace1D < scheme.Scheme + properties + g + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + H % Discrete norm + M % Derivative norm + a + + D2 + Hi + e_l + e_r + d_l + d_r + gamm + end + + methods + function obj = Laplace1D(g, order, a) + default_arg('a', 1); + + assertType(g, 'grid.Cartesian'); + + ops = sbp.Ordinary(g.size(), g.h, order); + + obj.D2 = sparse(ops.derivatives.D2); + obj.H = sparse(ops.norms.H); + obj.Hi = sparse(ops.norms.HI); + obj.M = sparse(ops.norms.M); + obj.e_l = sparse(ops.boundary.e_1); + obj.e_r = sparse(ops.boundary.e_m); + obj.d_l = sparse(ops.boundary.S_1); + obj.d_r = sparse(ops.boundary.S_m); + + + obj.g = g; + obj.order = order; + + obj.a = a; + obj.D = a*obj.D2; + + obj.gamm = h*ops.borrowing.M.S; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type,data) + default_arg('type','neumann'); + default_arg('data',0); + + [e,d,s] = obj.get_boundary_ops(boundary); + + switch type + % Dirichlet boundary condition + case {'D','dirichlet'} + alpha = obj.alpha; + + % tau1 < -alpha^2/gamma + tuning = 1.1; + tau1 = -tuning*alpha/obj.gamm; + tau2 = s*alpha; + + p = tau1*e + tau2*d; + + closure = obj.Hi*p*e'; + + pp = obj.Hi*p; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Wierd data argument!') + end + + + % Neumann boundary condition + case {'N','neumann'} + alpha = obj.alpha; + tau1 = -s*alpha; + tau2 = 0; + tau = tau1*e + tau2*d; + + closure = obj.Hi*tau*d'; + + pp = obj.Hi*tau; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Wierd data argument!') + end + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); + [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + tuning = 1.1; + + alpha_u = obj.alpha; + alpha_v = neighbour_scheme.alpha; + + gamm_u = obj.gamm; + gamm_v = neighbour_scheme.gamm; + + % tau1 < -(alpha_u/gamm_u + alpha_v/gamm_v) + + tau1 = -(alpha_u/gamm_u + alpha_v/gamm_v) * tuning; + tau2 = s_u*1/2*alpha_u; + sig1 = s_u*(-1/2); + sig2 = 0; + + tau = tau1*e_u + tau2*d_u; + sig = sig1*e_u + sig2*d_u; + + closure = obj.Hi*( tau*e_u' + sig*alpha_u*d_u'); + penalty = obj.Hi*(-tau*e_v' - sig*alpha_v*d_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e,d,s] = get_boundary_ops(obj,boundary) + switch boundary + case 'l' + e = obj.e_l; + d = obj.d_l; + s = -1; + case 'r' + e = obj.e_r; + d = obj.d_r; + s = 1; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = obj.m; + end + + end + + methods(Static) + % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file