diff +scheme/Hypsyst3dCurve.m @ 1033:037f203b9bf5 feature/burgers1d

Merge with branch feature/advectioRV to utilize the +rv package
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:44:12 +0100
parents 706d1c2b4199
children 0652b34f9f27
line wrap: on
line diff
--- a/+scheme/Hypsyst3dCurve.m	Fri Oct 12 08:50:25 2018 +0200
+++ b/+scheme/Hypsyst3dCurve.m	Thu Jan 17 10:44:12 2019 +0100
@@ -5,22 +5,22 @@
         h % Grid spacing
         X, Y, Z% Values of x and y for each grid point
         Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces
-        
+
         xi,eta,zeta
         Xi, Eta, Zeta
-        
+
         Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta    % Metric terms
         X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta % Metric terms
-        
+
         order % Order accuracy for the approximation
-        
+
         D % non-stabalized scheme operator
         Aevaluated, Bevaluated, Cevaluated, Eevaluated % Numeric Coeffiecient matrices
         Ahat, Bhat, Chat  % Symbolic Transformed Coefficient matrices
         A, B, C, E % Symbolic coeffiecient matrices
-        
+
         J, Ji % JAcobian and inverse Jacobian
-        
+
         H % Discrete norm
         % Norms in the x, y and z directions
         Hxii,Hetai,Hzetai, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
@@ -30,14 +30,14 @@
         index_w, index_e,index_s,index_n, index_b, index_t
         params %parameters for the coeficient matrice
     end
-    
-    
+
+
     methods
         function obj = Hypsyst3dCurve(m, order, A, B,C, E, params,ti,operator)
             xilim ={0 1};
             etalim = {0 1};
             zetalim = {0 1};
-            
+
             if length(m) == 1
                 m = [m m m];
             end
@@ -47,11 +47,11 @@
             m_tot = m_xi*m_eta*m_zeta;
             obj.params = params;
             obj.n = length(A(obj,0,0,0));
-            
+
             obj.m = m;
             obj.order = order;
             obj.onesN = ones(obj.n);
-            
+
             switch operator
                 case 'upwind'
                     ops_xi = sbp.D1Upwind(m_xi,xilim,order);
@@ -64,21 +64,21 @@
                 otherwise
                     error('Operator not available')
             end
-            
+
             obj.xi = ops_xi.x;
             obj.eta = ops_eta.x;
             obj.zeta = ops_zeta.x;
-            
+
             obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1));
             obj.Eta = kr(ones(m_xi,1),obj.eta,ones(m_zeta,1));
             obj.Zeta = kr(ones(m_xi,1),ones(m_eta,1),obj.zeta);
-            
-            
+
+
             [X,Y,Z] = ti.map(obj.Xi,obj.Eta,obj.Zeta);
             obj.X = X;
             obj.Y = Y;
             obj.Z = Z;
-            
+
             I_n = eye(obj.n);
             I_xi = speye(m_xi);
             obj.I_xi = I_xi;
@@ -86,19 +86,19 @@
             obj.I_eta = I_eta;
             I_zeta = speye(m_zeta);
             obj.I_zeta = I_zeta;
-            
+
             I_N=kr(I_n,I_xi,I_eta,I_zeta);
-            
+
             O_xi = ones(m_xi,1);
             O_eta = ones(m_eta,1);
             O_zeta = ones(m_zeta,1);
-            
-            
+
+
             obj.Hxi = ops_xi.H;
             obj.Heta = ops_eta.H;
             obj.Hzeta = ops_zeta.H;
             obj.h = [ops_xi.h ops_eta.h ops_zeta.h];
-            
+
             switch operator
                 case 'upwind'
                     D1_xi = kr((ops_xi.Dp+ops_xi.Dm)/2, I_eta,I_zeta);
@@ -109,11 +109,11 @@
                     D1_eta = kr(I_xi, ops_eta.D1,I_zeta);
                     D1_zeta = kr(I_xi, I_eta,ops_zeta.D1);
             end
-            
+
             obj.A = A;
             obj.B = B;
             obj.C = C;
-            
+
             obj.X_xi = D1_xi*X;
             obj.X_eta = D1_eta*X;
             obj.X_zeta = D1_zeta*X;
@@ -123,55 +123,55 @@
             obj.Z_xi = D1_xi*Z;
             obj.Z_eta = D1_eta*Z;
             obj.Z_zeta = D1_zeta*Z;
-            
+
             obj.Ahat = @transform_coefficient_matrix;
             obj.Bhat = @transform_coefficient_matrix;
             obj.Chat = @transform_coefficient_matrix;
             obj.E = @(obj,x,y,z,~,~,~,~,~,~)E(obj,x,y,z);
-            
+
             obj.Aevaluated = obj.evaluateCoefficientMatrix(obj.Ahat,obj.X, obj.Y,obj.Z, obj.X_eta,obj.X_zeta,obj.Y_eta,obj.Y_zeta,obj.Z_eta,obj.Z_zeta);
             obj.Bevaluated = obj.evaluateCoefficientMatrix(obj.Bhat,obj.X, obj.Y,obj.Z, obj.X_zeta,obj.X_xi,obj.Y_zeta,obj.Y_xi,obj.Z_zeta,obj.Z_xi);
             obj.Cevaluated = obj.evaluateCoefficientMatrix(obj.Chat,obj.X,obj.Y,obj.Z, obj.X_xi,obj.X_eta,obj.Y_xi,obj.Y_eta,obj.Z_xi,obj.Z_eta);
-            
+
             switch operator
                 case 'upwind'
                     clear  D1_xi D1_eta D1_zeta
                     alphaA = max(abs(eig(obj.Ahat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_eta(end),obj.X_zeta(end),obj.Y_eta(end),obj.Y_zeta(end),obj.Z_eta(end),obj.Z_zeta(end)))));
                     alphaB = max(abs(eig(obj.Bhat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_zeta(end),obj.X_xi(end),obj.Y_zeta(end),obj.Y_xi(end),obj.Z_zeta(end),obj.Z_xi(end)))));
                     alphaC = max(abs(eig(obj.Chat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_xi(end),obj.X_eta(end),obj.Y_xi(end),obj.Y_eta(end),obj.Z_xi(end),obj.Z_eta(end)))));
-                    
+
                     Ap = (obj.Aevaluated+alphaA*I_N)/2;
                     Dmxi = kr(I_n, ops_xi.Dm, I_eta,I_zeta);
                     diffSum = -Ap*Dmxi;
                     clear Ap Dmxi
-                    
+
                     Am = (obj.Aevaluated-alphaA*I_N)/2;
-                    
+
                     obj.Aevaluated = [];
                     Dpxi = kr(I_n, ops_xi.Dp, I_eta,I_zeta);
                     temp = Am*Dpxi;
                     diffSum = diffSum-temp;
                     clear Am Dpxi
-                    
+
                     Bp = (obj.Bevaluated+alphaB*I_N)/2;
                     Dmeta = kr(I_n, I_xi, ops_eta.Dm,I_zeta);
                     temp = Bp*Dmeta;
                     diffSum = diffSum-temp;
                     clear Bp Dmeta
-                    
+
                     Bm = (obj.Bevaluated-alphaB*I_N)/2;
                     obj.Bevaluated = [];
                     Dpeta = kr(I_n, I_xi, ops_eta.Dp,I_zeta);
                     temp = Bm*Dpeta;
                     diffSum = diffSum-temp;
                     clear Bm Dpeta
-                    
+
                     Cp = (obj.Cevaluated+alphaC*I_N)/2;
                     Dmzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dm);
                     temp = Cp*Dmzeta;
                     diffSum = diffSum-temp;
                     clear Cp Dmzeta
-                    
+
                     Cm = (obj.Cevaluated-alphaC*I_N)/2;
                     clear I_N
                     obj.Cevaluated = [];
@@ -179,72 +179,72 @@
                     temp = Cm*Dpzeta;
                     diffSum = diffSum-temp;
                     clear Cm Dpzeta temp
-                    
+
                     obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta...
                         +obj.X_zeta.*obj.Y_xi.*obj.Z_eta...
                         +obj.X_eta.*obj.Y_zeta.*obj.Z_xi...
                         -obj.X_xi.*obj.Y_zeta.*obj.Z_eta...
                         -obj.X_eta.*obj.Y_xi.*obj.Z_zeta...
                         -obj.X_zeta.*obj.Y_eta.*obj.Z_xi;
-                    
+
                     obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
                     obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]);
-                    
+
                     obj.D = obj.Ji*diffSum-obj.Eevaluated;
-                    
+
                 case 'standard'
                     D1_xi = kr(I_n,D1_xi);
                     D1_eta = kr(I_n,D1_eta);
                     D1_zeta = kr(I_n,D1_zeta);
-                    
+
                     obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta...
                         +obj.X_zeta.*obj.Y_xi.*obj.Z_eta...
                         +obj.X_eta.*obj.Y_zeta.*obj.Z_xi...
                         -obj.X_xi.*obj.Y_zeta.*obj.Z_eta...
                         -obj.X_eta.*obj.Y_xi.*obj.Z_zeta...
                         -obj.X_zeta.*obj.Y_eta.*obj.Z_xi;
-                    
+
                     obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
                     obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]);
-                    
+
                     obj.D = obj.Ji*(-obj.Aevaluated*D1_xi-obj.Bevaluated*D1_eta -obj.Cevaluated*D1_zeta)-obj.Eevaluated;
                 otherwise
                     error('Operator not supported')
             end
-            
+
             obj.Hxii = kr(I_n, ops_xi.HI, I_eta,I_zeta);
             obj.Hetai = kr(I_n, I_xi, ops_eta.HI,I_zeta);
             obj.Hzetai = kr(I_n, I_xi,I_eta, ops_zeta.HI);
-            
+
             obj.index_w = (kr(ops_xi.e_l, O_eta,O_zeta)==1);
             obj.index_e = (kr(ops_xi.e_r, O_eta,O_zeta)==1);
             obj.index_s = (kr(O_xi, ops_eta.e_l,O_zeta)==1);
             obj.index_n = (kr(O_xi, ops_eta.e_r,O_zeta)==1);
             obj.index_b = (kr(O_xi, O_eta, ops_zeta.e_l)==1);
             obj.index_t = (kr(O_xi, O_eta, ops_zeta.e_r)==1);
-            
+
             obj.e_w = kr(I_n, ops_xi.e_l, I_eta,I_zeta);
             obj.e_e = kr(I_n, ops_xi.e_r, I_eta,I_zeta);
             obj.e_s = kr(I_n, I_xi, ops_eta.e_l,I_zeta);
             obj.e_n = kr(I_n, I_xi, ops_eta.e_r,I_zeta);
             obj.e_b = kr(I_n, I_xi, I_eta, ops_zeta.e_l);
             obj.e_t = kr(I_n, I_xi, I_eta, ops_zeta.e_r);
-            
+
             obj.Eta_xi = kr(obj.eta,ones(m_xi,1));
             obj.Zeta_xi = kr(ones(m_eta,1),obj.zeta);
             obj.Xi_eta = kr(obj.xi,ones(m_zeta,1));
             obj.Zeta_eta = kr(ones(m_xi,1),obj.zeta);
             obj.Xi_zeta = kr(obj.xi,ones(m_eta,1));
-            obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta);           
+            obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta);
         end
-        
+
         function [ret] = transform_coefficient_matrix(obj,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2)
             ret = obj.A(obj,x,y,z).*(y_1.*z_2-z_1.*y_2);
             ret = ret+obj.B(obj,x,y,z).*(x_2.*z_1-x_1.*z_2);
             ret = ret+obj.C(obj,x,y,z).*(x_1.*y_2-x_2.*y_1);
         end
-        
-        
+
+
         % Closure functions return the opertors applied to the own doamin to close the boundary
         % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
         %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
@@ -253,7 +253,7 @@
         function [closure, penalty] = boundary_condition(obj,boundary,type,L)
             default_arg('type','char');
             BM = boundary_matrices(obj,boundary);
-            
+
             switch type
                 case{'c','char'}
                     [closure,penalty] = boundary_condition_char(obj,BM);
@@ -263,15 +263,15 @@
                     error('No such boundary condition')
             end
         end
-        
-        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
-            error('An interface function does not exist yet');
+
+        function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
+            error('Not implemented');
         end
-        
+
         function N = size(obj)
             N = obj.m;
         end
-        
+
         % Evaluates the symbolic Coeffiecient matrix mat
         function [ret] = evaluateCoefficientMatrix(obj,mat, X, Y, Z , x_1 , x_2 , y_1 , y_2 , z_1 , z_2)
             params = obj.params;
@@ -294,7 +294,7 @@
             end
             matVec(abs(matVec)<10^(-10)) = 0;
             ret = cell(rows,cols);
-            
+
             for ii = 1:rows
                 for jj = 1:cols
                     ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
@@ -302,7 +302,7 @@
             end
             ret = cell2mat(ret);
         end
-        
+
         function [BM] = boundary_matrices(obj,boundary)
             params = obj.params;
             BM.boundary = boundary;
@@ -385,7 +385,7 @@
             BM.side = sum(BM.index);
             BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3);
         end
-        
+
         % Characteristic boundary condition
         function [closure, penalty] = boundary_condition_char(obj,BM)
             side = BM.side;
@@ -397,7 +397,7 @@
             Hi = BM.Hi;
             D = BM.D;
             e_ = BM.e_;
-            
+
             switch BM.boundpos
                 case {'l'}
                     tau = sparse(obj.n*side,pos);
@@ -413,7 +413,7 @@
                     penalty = -Hi*e_*V*tau*Vi_minus;
             end
         end
-        
+
         % General boundary condition in the form Lu=g(x)
         function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L)
             side = BM.side;
@@ -426,7 +426,7 @@
             D = BM.D;
             e_ = BM.e_;
             index = BM.index;
-            
+
             switch BM.boundary
                 case{'b','B','bottom'}
                     Ji_vec = diag(obj.Ji);
@@ -434,10 +434,10 @@
                     Zeta_x = Ji*(obj.Y_xi(index).*obj.Z_eta(index)-obj.Z_xi(index).*obj.Y_eta(index));
                     Zeta_y = Ji*(obj.X_eta(index).*obj.Z_xi(index)-obj.X_xi(index).*obj.Z_eta(index));
                     Zeta_z = Ji*(obj.X_xi(index).*obj.Y_eta(index)-obj.Y_xi(index).*obj.X_eta(index));
-                    
+
                     L = obj.evaluateCoefficientMatrix(L,Zeta_x,Zeta_y,Zeta_z,[],[],[],[],[],[]);
             end
-            
+
             switch BM.boundpos
                 case {'l'}
                     tau = sparse(obj.n*side,pos);
@@ -445,7 +445,7 @@
                     Vi_minus = Vi(pos+zeroval+1:obj.n*side,:);
                     V_plus = V(:,1:pos);
                     V_minus = V(:,(pos+zeroval)+1:obj.n*side);
-                    
+
                     tau(1:pos,:) = -abs(D(1:pos,1:pos));
                     R = -inv(L*V_plus)*(L*V_minus);
                     closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
@@ -455,7 +455,7 @@
                     tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
                     Vi_plus = Vi(1:pos,:);
                     Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
-                    
+
                     V_plus = V(:,1:pos);
                     V_minus = V(:,(pos+zeroval)+1:obj.n*side);
                     R = -inv(L*V_minus)*(L*V_plus);
@@ -463,7 +463,7 @@
                     penalty = -Hi*e_*V*tau*inv(L*V_minus)*L;
             end
         end
-        
+
         % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
         % D         is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
         %                                    [d+       ]
@@ -478,38 +478,38 @@
             else
                 x_1s = 0;
             end
-            
+
             if(sum(abs(x_2))>eps)
                 syms x_2s;
             else
                 x_2s = 0;
             end
-            
-            
+
+
             if(sum(abs(y_1))>eps)
                 syms y_1s
             else
                 y_1s = 0;
             end
-            
+
             if(sum(abs(y_2))>eps)
                 syms y_2s;
             else
                 y_2s = 0;
             end
-            
+
             if(sum(abs(z_1))>eps)
                 syms z_1s
             else
                 z_1s = 0;
             end
-            
+
             if(sum(abs(z_2))>eps)
                 syms z_2s;
             else
                 z_2s = 0;
             end
-            
+
             syms xs ys zs
             [V, D] = eig(mat(obj,xs,ys,zs,x_1s,x_2s,y_1s,y_2s,z_1s,z_2s));
             Vi = inv(V);
@@ -522,12 +522,12 @@
             y_2s = y_2;
             z_1s = z_1;
             z_2s = z_2;
-            
+
             side = max(length(x),length(y));
             Dret = zeros(obj.n,side*obj.n);
             Vret = zeros(obj.n,side*obj.n);
             Viret = zeros(obj.n,side*obj.n);
-            
+
             for ii=1:obj.n
                 for jj=1:obj.n
                     Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii));
@@ -535,7 +535,7 @@
                     Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii));
                 end
             end
-            
+
             D = sparse(Dret);
             V = sparse(Vret);
             Vi = sparse(Viret);
@@ -543,11 +543,11 @@
             D = obj.evaluateCoefficientMatrix(D,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2);
             Vi = obj.evaluateCoefficientMatrix(Vi,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2);
             DD = diag(D);
-            
+
             poseig = (DD>0);
             zeroeig = (DD==0);
             negeig = (DD<0);
-            
+
             D = diag([DD(poseig); DD(zeroeig); DD(negeig)]);
             V = [V(:,poseig) V(:,zeroeig) V(:,negeig)];
             Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];