comparison +scheme/Hypsyst3dCurve.m @ 1033:037f203b9bf5 feature/burgers1d

Merge with branch feature/advectioRV to utilize the +rv package
author Vidar Stiernström <vidar.stiernstrom@it.uu.se>
date Thu, 17 Jan 2019 10:44:12 +0100
parents 706d1c2b4199
children 0652b34f9f27
comparison
equal deleted inserted replaced
854:18162a0a5bb5 1033:037f203b9bf5
3 m % Number of points in each direction, possibly a vector 3 m % Number of points in each direction, possibly a vector
4 n %size of system 4 n %size of system
5 h % Grid spacing 5 h % Grid spacing
6 X, Y, Z% Values of x and y for each grid point 6 X, Y, Z% Values of x and y for each grid point
7 Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces 7 Yx, Zx, Xy, Zy, Xz, Yz %Grid values for boundary surfaces
8 8
9 xi,eta,zeta 9 xi,eta,zeta
10 Xi, Eta, Zeta 10 Xi, Eta, Zeta
11 11
12 Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta % Metric terms 12 Eta_xi, Zeta_xi, Xi_eta, Zeta_eta, Xi_zeta, Eta_zeta % Metric terms
13 X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta % Metric terms 13 X_xi, X_eta, X_zeta,Y_xi,Y_eta,Y_zeta,Z_xi,Z_eta,Z_zeta % Metric terms
14 14
15 order % Order accuracy for the approximation 15 order % Order accuracy for the approximation
16 16
17 D % non-stabalized scheme operator 17 D % non-stabalized scheme operator
18 Aevaluated, Bevaluated, Cevaluated, Eevaluated % Numeric Coeffiecient matrices 18 Aevaluated, Bevaluated, Cevaluated, Eevaluated % Numeric Coeffiecient matrices
19 Ahat, Bhat, Chat % Symbolic Transformed Coefficient matrices 19 Ahat, Bhat, Chat % Symbolic Transformed Coefficient matrices
20 A, B, C, E % Symbolic coeffiecient matrices 20 A, B, C, E % Symbolic coeffiecient matrices
21 21
22 J, Ji % JAcobian and inverse Jacobian 22 J, Ji % JAcobian and inverse Jacobian
23 23
24 H % Discrete norm 24 H % Discrete norm
25 % Norms in the x, y and z directions 25 % Norms in the x, y and z directions
26 Hxii,Hetai,Hzetai, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. 26 Hxii,Hetai,Hzetai, Hzi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir.
27 Hxi,Heta,Hzeta 27 Hxi,Heta,Hzeta
28 I_xi,I_eta,I_zeta, I_N,onesN 28 I_xi,I_eta,I_zeta, I_N,onesN
29 e_w, e_e, e_s, e_n, e_b, e_t 29 e_w, e_e, e_s, e_n, e_b, e_t
30 index_w, index_e,index_s,index_n, index_b, index_t 30 index_w, index_e,index_s,index_n, index_b, index_t
31 params %parameters for the coeficient matrice 31 params %parameters for the coeficient matrice
32 end 32 end
33 33
34 34
35 methods 35 methods
36 function obj = Hypsyst3dCurve(m, order, A, B,C, E, params,ti,operator) 36 function obj = Hypsyst3dCurve(m, order, A, B,C, E, params,ti,operator)
37 xilim ={0 1}; 37 xilim ={0 1};
38 etalim = {0 1}; 38 etalim = {0 1};
39 zetalim = {0 1}; 39 zetalim = {0 1};
40 40
41 if length(m) == 1 41 if length(m) == 1
42 m = [m m m]; 42 m = [m m m];
43 end 43 end
44 m_xi = m(1); 44 m_xi = m(1);
45 m_eta = m(2); 45 m_eta = m(2);
46 m_zeta = m(3); 46 m_zeta = m(3);
47 m_tot = m_xi*m_eta*m_zeta; 47 m_tot = m_xi*m_eta*m_zeta;
48 obj.params = params; 48 obj.params = params;
49 obj.n = length(A(obj,0,0,0)); 49 obj.n = length(A(obj,0,0,0));
50 50
51 obj.m = m; 51 obj.m = m;
52 obj.order = order; 52 obj.order = order;
53 obj.onesN = ones(obj.n); 53 obj.onesN = ones(obj.n);
54 54
55 switch operator 55 switch operator
56 case 'upwind' 56 case 'upwind'
57 ops_xi = sbp.D1Upwind(m_xi,xilim,order); 57 ops_xi = sbp.D1Upwind(m_xi,xilim,order);
58 ops_eta = sbp.D1Upwind(m_eta,etalim,order); 58 ops_eta = sbp.D1Upwind(m_eta,etalim,order);
59 ops_zeta = sbp.D1Upwind(m_zeta,zetalim,order); 59 ops_zeta = sbp.D1Upwind(m_zeta,zetalim,order);
62 ops_eta = sbp.D2Standard(m_eta,etalim,order); 62 ops_eta = sbp.D2Standard(m_eta,etalim,order);
63 ops_zeta = sbp.D2Standard(m_zeta,zetalim,order); 63 ops_zeta = sbp.D2Standard(m_zeta,zetalim,order);
64 otherwise 64 otherwise
65 error('Operator not available') 65 error('Operator not available')
66 end 66 end
67 67
68 obj.xi = ops_xi.x; 68 obj.xi = ops_xi.x;
69 obj.eta = ops_eta.x; 69 obj.eta = ops_eta.x;
70 obj.zeta = ops_zeta.x; 70 obj.zeta = ops_zeta.x;
71 71
72 obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1)); 72 obj.Xi = kr(obj.xi,ones(m_eta,1),ones(m_zeta,1));
73 obj.Eta = kr(ones(m_xi,1),obj.eta,ones(m_zeta,1)); 73 obj.Eta = kr(ones(m_xi,1),obj.eta,ones(m_zeta,1));
74 obj.Zeta = kr(ones(m_xi,1),ones(m_eta,1),obj.zeta); 74 obj.Zeta = kr(ones(m_xi,1),ones(m_eta,1),obj.zeta);
75 75
76 76
77 [X,Y,Z] = ti.map(obj.Xi,obj.Eta,obj.Zeta); 77 [X,Y,Z] = ti.map(obj.Xi,obj.Eta,obj.Zeta);
78 obj.X = X; 78 obj.X = X;
79 obj.Y = Y; 79 obj.Y = Y;
80 obj.Z = Z; 80 obj.Z = Z;
81 81
82 I_n = eye(obj.n); 82 I_n = eye(obj.n);
83 I_xi = speye(m_xi); 83 I_xi = speye(m_xi);
84 obj.I_xi = I_xi; 84 obj.I_xi = I_xi;
85 I_eta = speye(m_eta); 85 I_eta = speye(m_eta);
86 obj.I_eta = I_eta; 86 obj.I_eta = I_eta;
87 I_zeta = speye(m_zeta); 87 I_zeta = speye(m_zeta);
88 obj.I_zeta = I_zeta; 88 obj.I_zeta = I_zeta;
89 89
90 I_N=kr(I_n,I_xi,I_eta,I_zeta); 90 I_N=kr(I_n,I_xi,I_eta,I_zeta);
91 91
92 O_xi = ones(m_xi,1); 92 O_xi = ones(m_xi,1);
93 O_eta = ones(m_eta,1); 93 O_eta = ones(m_eta,1);
94 O_zeta = ones(m_zeta,1); 94 O_zeta = ones(m_zeta,1);
95 95
96 96
97 obj.Hxi = ops_xi.H; 97 obj.Hxi = ops_xi.H;
98 obj.Heta = ops_eta.H; 98 obj.Heta = ops_eta.H;
99 obj.Hzeta = ops_zeta.H; 99 obj.Hzeta = ops_zeta.H;
100 obj.h = [ops_xi.h ops_eta.h ops_zeta.h]; 100 obj.h = [ops_xi.h ops_eta.h ops_zeta.h];
101 101
102 switch operator 102 switch operator
103 case 'upwind' 103 case 'upwind'
104 D1_xi = kr((ops_xi.Dp+ops_xi.Dm)/2, I_eta,I_zeta); 104 D1_xi = kr((ops_xi.Dp+ops_xi.Dm)/2, I_eta,I_zeta);
105 D1_eta = kr(I_xi, (ops_eta.Dp+ops_eta.Dm)/2,I_zeta); 105 D1_eta = kr(I_xi, (ops_eta.Dp+ops_eta.Dm)/2,I_zeta);
106 D1_zeta = kr(I_xi, I_eta,(ops_zeta.Dp+ops_zeta.Dm)/2); 106 D1_zeta = kr(I_xi, I_eta,(ops_zeta.Dp+ops_zeta.Dm)/2);
107 otherwise 107 otherwise
108 D1_xi = kr(ops_xi.D1, I_eta,I_zeta); 108 D1_xi = kr(ops_xi.D1, I_eta,I_zeta);
109 D1_eta = kr(I_xi, ops_eta.D1,I_zeta); 109 D1_eta = kr(I_xi, ops_eta.D1,I_zeta);
110 D1_zeta = kr(I_xi, I_eta,ops_zeta.D1); 110 D1_zeta = kr(I_xi, I_eta,ops_zeta.D1);
111 end 111 end
112 112
113 obj.A = A; 113 obj.A = A;
114 obj.B = B; 114 obj.B = B;
115 obj.C = C; 115 obj.C = C;
116 116
117 obj.X_xi = D1_xi*X; 117 obj.X_xi = D1_xi*X;
118 obj.X_eta = D1_eta*X; 118 obj.X_eta = D1_eta*X;
119 obj.X_zeta = D1_zeta*X; 119 obj.X_zeta = D1_zeta*X;
120 obj.Y_xi = D1_xi*Y; 120 obj.Y_xi = D1_xi*Y;
121 obj.Y_eta = D1_eta*Y; 121 obj.Y_eta = D1_eta*Y;
122 obj.Y_zeta = D1_zeta*Y; 122 obj.Y_zeta = D1_zeta*Y;
123 obj.Z_xi = D1_xi*Z; 123 obj.Z_xi = D1_xi*Z;
124 obj.Z_eta = D1_eta*Z; 124 obj.Z_eta = D1_eta*Z;
125 obj.Z_zeta = D1_zeta*Z; 125 obj.Z_zeta = D1_zeta*Z;
126 126
127 obj.Ahat = @transform_coefficient_matrix; 127 obj.Ahat = @transform_coefficient_matrix;
128 obj.Bhat = @transform_coefficient_matrix; 128 obj.Bhat = @transform_coefficient_matrix;
129 obj.Chat = @transform_coefficient_matrix; 129 obj.Chat = @transform_coefficient_matrix;
130 obj.E = @(obj,x,y,z,~,~,~,~,~,~)E(obj,x,y,z); 130 obj.E = @(obj,x,y,z,~,~,~,~,~,~)E(obj,x,y,z);
131 131
132 obj.Aevaluated = obj.evaluateCoefficientMatrix(obj.Ahat,obj.X, obj.Y,obj.Z, obj.X_eta,obj.X_zeta,obj.Y_eta,obj.Y_zeta,obj.Z_eta,obj.Z_zeta); 132 obj.Aevaluated = obj.evaluateCoefficientMatrix(obj.Ahat,obj.X, obj.Y,obj.Z, obj.X_eta,obj.X_zeta,obj.Y_eta,obj.Y_zeta,obj.Z_eta,obj.Z_zeta);
133 obj.Bevaluated = obj.evaluateCoefficientMatrix(obj.Bhat,obj.X, obj.Y,obj.Z, obj.X_zeta,obj.X_xi,obj.Y_zeta,obj.Y_xi,obj.Z_zeta,obj.Z_xi); 133 obj.Bevaluated = obj.evaluateCoefficientMatrix(obj.Bhat,obj.X, obj.Y,obj.Z, obj.X_zeta,obj.X_xi,obj.Y_zeta,obj.Y_xi,obj.Z_zeta,obj.Z_xi);
134 obj.Cevaluated = obj.evaluateCoefficientMatrix(obj.Chat,obj.X,obj.Y,obj.Z, obj.X_xi,obj.X_eta,obj.Y_xi,obj.Y_eta,obj.Z_xi,obj.Z_eta); 134 obj.Cevaluated = obj.evaluateCoefficientMatrix(obj.Chat,obj.X,obj.Y,obj.Z, obj.X_xi,obj.X_eta,obj.Y_xi,obj.Y_eta,obj.Z_xi,obj.Z_eta);
135 135
136 switch operator 136 switch operator
137 case 'upwind' 137 case 'upwind'
138 clear D1_xi D1_eta D1_zeta 138 clear D1_xi D1_eta D1_zeta
139 alphaA = max(abs(eig(obj.Ahat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_eta(end),obj.X_zeta(end),obj.Y_eta(end),obj.Y_zeta(end),obj.Z_eta(end),obj.Z_zeta(end))))); 139 alphaA = max(abs(eig(obj.Ahat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_eta(end),obj.X_zeta(end),obj.Y_eta(end),obj.Y_zeta(end),obj.Z_eta(end),obj.Z_zeta(end)))));
140 alphaB = max(abs(eig(obj.Bhat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_zeta(end),obj.X_xi(end),obj.Y_zeta(end),obj.Y_xi(end),obj.Z_zeta(end),obj.Z_xi(end))))); 140 alphaB = max(abs(eig(obj.Bhat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_zeta(end),obj.X_xi(end),obj.Y_zeta(end),obj.Y_xi(end),obj.Z_zeta(end),obj.Z_xi(end)))));
141 alphaC = max(abs(eig(obj.Chat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_xi(end),obj.X_eta(end),obj.Y_xi(end),obj.Y_eta(end),obj.Z_xi(end),obj.Z_eta(end))))); 141 alphaC = max(abs(eig(obj.Chat(obj,obj.X(end), obj.Y(end),obj.Z(end), obj.X_xi(end),obj.X_eta(end),obj.Y_xi(end),obj.Y_eta(end),obj.Z_xi(end),obj.Z_eta(end)))));
142 142
143 Ap = (obj.Aevaluated+alphaA*I_N)/2; 143 Ap = (obj.Aevaluated+alphaA*I_N)/2;
144 Dmxi = kr(I_n, ops_xi.Dm, I_eta,I_zeta); 144 Dmxi = kr(I_n, ops_xi.Dm, I_eta,I_zeta);
145 diffSum = -Ap*Dmxi; 145 diffSum = -Ap*Dmxi;
146 clear Ap Dmxi 146 clear Ap Dmxi
147 147
148 Am = (obj.Aevaluated-alphaA*I_N)/2; 148 Am = (obj.Aevaluated-alphaA*I_N)/2;
149 149
150 obj.Aevaluated = []; 150 obj.Aevaluated = [];
151 Dpxi = kr(I_n, ops_xi.Dp, I_eta,I_zeta); 151 Dpxi = kr(I_n, ops_xi.Dp, I_eta,I_zeta);
152 temp = Am*Dpxi; 152 temp = Am*Dpxi;
153 diffSum = diffSum-temp; 153 diffSum = diffSum-temp;
154 clear Am Dpxi 154 clear Am Dpxi
155 155
156 Bp = (obj.Bevaluated+alphaB*I_N)/2; 156 Bp = (obj.Bevaluated+alphaB*I_N)/2;
157 Dmeta = kr(I_n, I_xi, ops_eta.Dm,I_zeta); 157 Dmeta = kr(I_n, I_xi, ops_eta.Dm,I_zeta);
158 temp = Bp*Dmeta; 158 temp = Bp*Dmeta;
159 diffSum = diffSum-temp; 159 diffSum = diffSum-temp;
160 clear Bp Dmeta 160 clear Bp Dmeta
161 161
162 Bm = (obj.Bevaluated-alphaB*I_N)/2; 162 Bm = (obj.Bevaluated-alphaB*I_N)/2;
163 obj.Bevaluated = []; 163 obj.Bevaluated = [];
164 Dpeta = kr(I_n, I_xi, ops_eta.Dp,I_zeta); 164 Dpeta = kr(I_n, I_xi, ops_eta.Dp,I_zeta);
165 temp = Bm*Dpeta; 165 temp = Bm*Dpeta;
166 diffSum = diffSum-temp; 166 diffSum = diffSum-temp;
167 clear Bm Dpeta 167 clear Bm Dpeta
168 168
169 Cp = (obj.Cevaluated+alphaC*I_N)/2; 169 Cp = (obj.Cevaluated+alphaC*I_N)/2;
170 Dmzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dm); 170 Dmzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dm);
171 temp = Cp*Dmzeta; 171 temp = Cp*Dmzeta;
172 diffSum = diffSum-temp; 172 diffSum = diffSum-temp;
173 clear Cp Dmzeta 173 clear Cp Dmzeta
174 174
175 Cm = (obj.Cevaluated-alphaC*I_N)/2; 175 Cm = (obj.Cevaluated-alphaC*I_N)/2;
176 clear I_N 176 clear I_N
177 obj.Cevaluated = []; 177 obj.Cevaluated = [];
178 Dpzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dp); 178 Dpzeta = kr(I_n, I_xi, I_eta,ops_zeta.Dp);
179 temp = Cm*Dpzeta; 179 temp = Cm*Dpzeta;
180 diffSum = diffSum-temp; 180 diffSum = diffSum-temp;
181 clear Cm Dpzeta temp 181 clear Cm Dpzeta temp
182 182
183 obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta... 183 obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta...
184 +obj.X_zeta.*obj.Y_xi.*obj.Z_eta... 184 +obj.X_zeta.*obj.Y_xi.*obj.Z_eta...
185 +obj.X_eta.*obj.Y_zeta.*obj.Z_xi... 185 +obj.X_eta.*obj.Y_zeta.*obj.Z_xi...
186 -obj.X_xi.*obj.Y_zeta.*obj.Z_eta... 186 -obj.X_xi.*obj.Y_zeta.*obj.Z_eta...
187 -obj.X_eta.*obj.Y_xi.*obj.Z_zeta... 187 -obj.X_eta.*obj.Y_xi.*obj.Z_zeta...
188 -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; 188 -obj.X_zeta.*obj.Y_eta.*obj.Z_xi;
189 189
190 obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); 190 obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
191 obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]); 191 obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]);
192 192
193 obj.D = obj.Ji*diffSum-obj.Eevaluated; 193 obj.D = obj.Ji*diffSum-obj.Eevaluated;
194 194
195 case 'standard' 195 case 'standard'
196 D1_xi = kr(I_n,D1_xi); 196 D1_xi = kr(I_n,D1_xi);
197 D1_eta = kr(I_n,D1_eta); 197 D1_eta = kr(I_n,D1_eta);
198 D1_zeta = kr(I_n,D1_zeta); 198 D1_zeta = kr(I_n,D1_zeta);
199 199
200 obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta... 200 obj.J = obj.X_xi.*obj.Y_eta.*obj.Z_zeta...
201 +obj.X_zeta.*obj.Y_xi.*obj.Z_eta... 201 +obj.X_zeta.*obj.Y_xi.*obj.Z_eta...
202 +obj.X_eta.*obj.Y_zeta.*obj.Z_xi... 202 +obj.X_eta.*obj.Y_zeta.*obj.Z_xi...
203 -obj.X_xi.*obj.Y_zeta.*obj.Z_eta... 203 -obj.X_xi.*obj.Y_zeta.*obj.Z_eta...
204 -obj.X_eta.*obj.Y_xi.*obj.Z_zeta... 204 -obj.X_eta.*obj.Y_xi.*obj.Z_zeta...
205 -obj.X_zeta.*obj.Y_eta.*obj.Z_xi; 205 -obj.X_zeta.*obj.Y_eta.*obj.Z_xi;
206 206
207 obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot)); 207 obj.Ji = kr(I_n,spdiags(1./obj.J,0,m_tot,m_tot));
208 obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]); 208 obj.Eevaluated = obj.evaluateCoefficientMatrix(obj.E, obj.X, obj.Y,obj.Z,[],[],[],[],[],[]);
209 209
210 obj.D = obj.Ji*(-obj.Aevaluated*D1_xi-obj.Bevaluated*D1_eta -obj.Cevaluated*D1_zeta)-obj.Eevaluated; 210 obj.D = obj.Ji*(-obj.Aevaluated*D1_xi-obj.Bevaluated*D1_eta -obj.Cevaluated*D1_zeta)-obj.Eevaluated;
211 otherwise 211 otherwise
212 error('Operator not supported') 212 error('Operator not supported')
213 end 213 end
214 214
215 obj.Hxii = kr(I_n, ops_xi.HI, I_eta,I_zeta); 215 obj.Hxii = kr(I_n, ops_xi.HI, I_eta,I_zeta);
216 obj.Hetai = kr(I_n, I_xi, ops_eta.HI,I_zeta); 216 obj.Hetai = kr(I_n, I_xi, ops_eta.HI,I_zeta);
217 obj.Hzetai = kr(I_n, I_xi,I_eta, ops_zeta.HI); 217 obj.Hzetai = kr(I_n, I_xi,I_eta, ops_zeta.HI);
218 218
219 obj.index_w = (kr(ops_xi.e_l, O_eta,O_zeta)==1); 219 obj.index_w = (kr(ops_xi.e_l, O_eta,O_zeta)==1);
220 obj.index_e = (kr(ops_xi.e_r, O_eta,O_zeta)==1); 220 obj.index_e = (kr(ops_xi.e_r, O_eta,O_zeta)==1);
221 obj.index_s = (kr(O_xi, ops_eta.e_l,O_zeta)==1); 221 obj.index_s = (kr(O_xi, ops_eta.e_l,O_zeta)==1);
222 obj.index_n = (kr(O_xi, ops_eta.e_r,O_zeta)==1); 222 obj.index_n = (kr(O_xi, ops_eta.e_r,O_zeta)==1);
223 obj.index_b = (kr(O_xi, O_eta, ops_zeta.e_l)==1); 223 obj.index_b = (kr(O_xi, O_eta, ops_zeta.e_l)==1);
224 obj.index_t = (kr(O_xi, O_eta, ops_zeta.e_r)==1); 224 obj.index_t = (kr(O_xi, O_eta, ops_zeta.e_r)==1);
225 225
226 obj.e_w = kr(I_n, ops_xi.e_l, I_eta,I_zeta); 226 obj.e_w = kr(I_n, ops_xi.e_l, I_eta,I_zeta);
227 obj.e_e = kr(I_n, ops_xi.e_r, I_eta,I_zeta); 227 obj.e_e = kr(I_n, ops_xi.e_r, I_eta,I_zeta);
228 obj.e_s = kr(I_n, I_xi, ops_eta.e_l,I_zeta); 228 obj.e_s = kr(I_n, I_xi, ops_eta.e_l,I_zeta);
229 obj.e_n = kr(I_n, I_xi, ops_eta.e_r,I_zeta); 229 obj.e_n = kr(I_n, I_xi, ops_eta.e_r,I_zeta);
230 obj.e_b = kr(I_n, I_xi, I_eta, ops_zeta.e_l); 230 obj.e_b = kr(I_n, I_xi, I_eta, ops_zeta.e_l);
231 obj.e_t = kr(I_n, I_xi, I_eta, ops_zeta.e_r); 231 obj.e_t = kr(I_n, I_xi, I_eta, ops_zeta.e_r);
232 232
233 obj.Eta_xi = kr(obj.eta,ones(m_xi,1)); 233 obj.Eta_xi = kr(obj.eta,ones(m_xi,1));
234 obj.Zeta_xi = kr(ones(m_eta,1),obj.zeta); 234 obj.Zeta_xi = kr(ones(m_eta,1),obj.zeta);
235 obj.Xi_eta = kr(obj.xi,ones(m_zeta,1)); 235 obj.Xi_eta = kr(obj.xi,ones(m_zeta,1));
236 obj.Zeta_eta = kr(ones(m_xi,1),obj.zeta); 236 obj.Zeta_eta = kr(ones(m_xi,1),obj.zeta);
237 obj.Xi_zeta = kr(obj.xi,ones(m_eta,1)); 237 obj.Xi_zeta = kr(obj.xi,ones(m_eta,1));
238 obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta); 238 obj.Eta_zeta = kr(ones(m_zeta,1),obj.eta);
239 end 239 end
240 240
241 function [ret] = transform_coefficient_matrix(obj,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2) 241 function [ret] = transform_coefficient_matrix(obj,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2)
242 ret = obj.A(obj,x,y,z).*(y_1.*z_2-z_1.*y_2); 242 ret = obj.A(obj,x,y,z).*(y_1.*z_2-z_1.*y_2);
243 ret = ret+obj.B(obj,x,y,z).*(x_2.*z_1-x_1.*z_2); 243 ret = ret+obj.B(obj,x,y,z).*(x_2.*z_1-x_1.*z_2);
244 ret = ret+obj.C(obj,x,y,z).*(x_1.*y_2-x_2.*y_1); 244 ret = ret+obj.C(obj,x,y,z).*(x_1.*y_2-x_2.*y_1);
245 end 245 end
246 246
247 247
248 % Closure functions return the opertors applied to the own doamin to close the boundary 248 % Closure functions return the opertors applied to the own doamin to close the boundary
249 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. 249 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
250 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. 250 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
251 % type is a string specifying the type of boundary condition if there are several. 251 % type is a string specifying the type of boundary condition if there are several.
252 % data is a function returning the data that should be applied at the boundary. 252 % data is a function returning the data that should be applied at the boundary.
253 function [closure, penalty] = boundary_condition(obj,boundary,type,L) 253 function [closure, penalty] = boundary_condition(obj,boundary,type,L)
254 default_arg('type','char'); 254 default_arg('type','char');
255 BM = boundary_matrices(obj,boundary); 255 BM = boundary_matrices(obj,boundary);
256 256
257 switch type 257 switch type
258 case{'c','char'} 258 case{'c','char'}
259 [closure,penalty] = boundary_condition_char(obj,BM); 259 [closure,penalty] = boundary_condition_char(obj,BM);
260 case{'general'} 260 case{'general'}
261 [closure,penalty] = boundary_condition_general(obj,BM,boundary,L); 261 [closure,penalty] = boundary_condition_general(obj,BM,boundary,L);
262 otherwise 262 otherwise
263 error('No such boundary condition') 263 error('No such boundary condition')
264 end 264 end
265 end 265 end
266 266
267 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) 267 function [closure, penalty] = interface(obj, boundary, neighbour_scheme, neighbour_boundary, type)
268 error('An interface function does not exist yet'); 268 error('Not implemented');
269 end 269 end
270 270
271 function N = size(obj) 271 function N = size(obj)
272 N = obj.m; 272 N = obj.m;
273 end 273 end
274 274
275 % Evaluates the symbolic Coeffiecient matrix mat 275 % Evaluates the symbolic Coeffiecient matrix mat
276 function [ret] = evaluateCoefficientMatrix(obj,mat, X, Y, Z , x_1 , x_2 , y_1 , y_2 , z_1 , z_2) 276 function [ret] = evaluateCoefficientMatrix(obj,mat, X, Y, Z , x_1 , x_2 , y_1 , y_2 , z_1 , z_2)
277 params = obj.params; 277 params = obj.params;
278 side = max(length(X),length(Y)); 278 side = max(length(X),length(Y));
279 if isa(mat,'function_handle') 279 if isa(mat,'function_handle')
292 side = max(length(X),length(Y)); 292 side = max(length(X),length(Y));
293 cols = cols/side; 293 cols = cols/side;
294 end 294 end
295 matVec(abs(matVec)<10^(-10)) = 0; 295 matVec(abs(matVec)<10^(-10)) = 0;
296 ret = cell(rows,cols); 296 ret = cell(rows,cols);
297 297
298 for ii = 1:rows 298 for ii = 1:rows
299 for jj = 1:cols 299 for jj = 1:cols
300 ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side)); 300 ret{ii,jj} = diag(matVec(ii,(jj-1)*side+1:jj*side));
301 end 301 end
302 end 302 end
303 ret = cell2mat(ret); 303 ret = cell2mat(ret);
304 end 304 end
305 305
306 function [BM] = boundary_matrices(obj,boundary) 306 function [BM] = boundary_matrices(obj,boundary)
307 params = obj.params; 307 params = obj.params;
308 BM.boundary = boundary; 308 BM.boundary = boundary;
309 switch boundary 309 switch boundary
310 case {'w','W','west'} 310 case {'w','W','west'}
383 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(BM.index),obj.Y(BM.index),obj.Z(BM.index),... 383 [BM.V,BM.Vi,BM.D,signVec] = obj.matrixDiag(mat,obj.X(BM.index),obj.Y(BM.index),obj.Z(BM.index),...
384 BM.x_1,BM.x_2,BM.y_1,BM.y_2,BM.z_1,BM.z_2); 384 BM.x_1,BM.x_2,BM.y_1,BM.y_2,BM.z_1,BM.z_2);
385 BM.side = sum(BM.index); 385 BM.side = sum(BM.index);
386 BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3); 386 BM.pos = signVec(1); BM.zeroval=signVec(2); BM.neg=signVec(3);
387 end 387 end
388 388
389 % Characteristic boundary condition 389 % Characteristic boundary condition
390 function [closure, penalty] = boundary_condition_char(obj,BM) 390 function [closure, penalty] = boundary_condition_char(obj,BM)
391 side = BM.side; 391 side = BM.side;
392 pos = BM.pos; 392 pos = BM.pos;
393 neg = BM.neg; 393 neg = BM.neg;
395 V = BM.V; 395 V = BM.V;
396 Vi = BM.Vi; 396 Vi = BM.Vi;
397 Hi = BM.Hi; 397 Hi = BM.Hi;
398 D = BM.D; 398 D = BM.D;
399 e_ = BM.e_; 399 e_ = BM.e_;
400 400
401 switch BM.boundpos 401 switch BM.boundpos
402 case {'l'} 402 case {'l'}
403 tau = sparse(obj.n*side,pos); 403 tau = sparse(obj.n*side,pos);
404 Vi_plus = Vi(1:pos,:); 404 Vi_plus = Vi(1:pos,:);
405 tau(1:pos,:) = -abs(D(1:pos,1:pos)); 405 tau(1:pos,:) = -abs(D(1:pos,1:pos));
411 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); 411 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
412 closure = Hi*e_*V*tau*Vi_minus*e_'; 412 closure = Hi*e_*V*tau*Vi_minus*e_';
413 penalty = -Hi*e_*V*tau*Vi_minus; 413 penalty = -Hi*e_*V*tau*Vi_minus;
414 end 414 end
415 end 415 end
416 416
417 % General boundary condition in the form Lu=g(x) 417 % General boundary condition in the form Lu=g(x)
418 function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L) 418 function [closure,penalty] = boundary_condition_general(obj,BM,boundary,L)
419 side = BM.side; 419 side = BM.side;
420 pos = BM.pos; 420 pos = BM.pos;
421 neg = BM.neg; 421 neg = BM.neg;
424 Vi = BM.Vi; 424 Vi = BM.Vi;
425 Hi = BM.Hi; 425 Hi = BM.Hi;
426 D = BM.D; 426 D = BM.D;
427 e_ = BM.e_; 427 e_ = BM.e_;
428 index = BM.index; 428 index = BM.index;
429 429
430 switch BM.boundary 430 switch BM.boundary
431 case{'b','B','bottom'} 431 case{'b','B','bottom'}
432 Ji_vec = diag(obj.Ji); 432 Ji_vec = diag(obj.Ji);
433 Ji = diag(Ji_vec(index)); 433 Ji = diag(Ji_vec(index));
434 Zeta_x = Ji*(obj.Y_xi(index).*obj.Z_eta(index)-obj.Z_xi(index).*obj.Y_eta(index)); 434 Zeta_x = Ji*(obj.Y_xi(index).*obj.Z_eta(index)-obj.Z_xi(index).*obj.Y_eta(index));
435 Zeta_y = Ji*(obj.X_eta(index).*obj.Z_xi(index)-obj.X_xi(index).*obj.Z_eta(index)); 435 Zeta_y = Ji*(obj.X_eta(index).*obj.Z_xi(index)-obj.X_xi(index).*obj.Z_eta(index));
436 Zeta_z = Ji*(obj.X_xi(index).*obj.Y_eta(index)-obj.Y_xi(index).*obj.X_eta(index)); 436 Zeta_z = Ji*(obj.X_xi(index).*obj.Y_eta(index)-obj.Y_xi(index).*obj.X_eta(index));
437 437
438 L = obj.evaluateCoefficientMatrix(L,Zeta_x,Zeta_y,Zeta_z,[],[],[],[],[],[]); 438 L = obj.evaluateCoefficientMatrix(L,Zeta_x,Zeta_y,Zeta_z,[],[],[],[],[],[]);
439 end 439 end
440 440
441 switch BM.boundpos 441 switch BM.boundpos
442 case {'l'} 442 case {'l'}
443 tau = sparse(obj.n*side,pos); 443 tau = sparse(obj.n*side,pos);
444 Vi_plus = Vi(1:pos,:); 444 Vi_plus = Vi(1:pos,:);
445 Vi_minus = Vi(pos+zeroval+1:obj.n*side,:); 445 Vi_minus = Vi(pos+zeroval+1:obj.n*side,:);
446 V_plus = V(:,1:pos); 446 V_plus = V(:,1:pos);
447 V_minus = V(:,(pos+zeroval)+1:obj.n*side); 447 V_minus = V(:,(pos+zeroval)+1:obj.n*side);
448 448
449 tau(1:pos,:) = -abs(D(1:pos,1:pos)); 449 tau(1:pos,:) = -abs(D(1:pos,1:pos));
450 R = -inv(L*V_plus)*(L*V_minus); 450 R = -inv(L*V_plus)*(L*V_minus);
451 closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; 451 closure = Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_';
452 penalty = -Hi*e_*V*tau*inv(L*V_plus)*L; 452 penalty = -Hi*e_*V*tau*inv(L*V_plus)*L;
453 case {'r'} 453 case {'r'}
454 tau = sparse(obj.n*side,neg); 454 tau = sparse(obj.n*side,neg);
455 tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side)); 455 tau((pos+zeroval)+1:obj.n*side,:) = -abs(D((pos+zeroval)+1:obj.n*side,(pos+zeroval)+1:obj.n*side));
456 Vi_plus = Vi(1:pos,:); 456 Vi_plus = Vi(1:pos,:);
457 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:); 457 Vi_minus = Vi((pos+zeroval)+1:obj.n*side,:);
458 458
459 V_plus = V(:,1:pos); 459 V_plus = V(:,1:pos);
460 V_minus = V(:,(pos+zeroval)+1:obj.n*side); 460 V_minus = V(:,(pos+zeroval)+1:obj.n*side);
461 R = -inv(L*V_minus)*(L*V_plus); 461 R = -inv(L*V_minus)*(L*V_plus);
462 closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; 462 closure = Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_';
463 penalty = -Hi*e_*V*tau*inv(L*V_minus)*L; 463 penalty = -Hi*e_*V*tau*inv(L*V_minus)*L;
464 end 464 end
465 end 465 end
466 466
467 % Function that diagonalizes a symbolic matrix A as A=V*D*Vi 467 % Function that diagonalizes a symbolic matrix A as A=V*D*Vi
468 % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign 468 % D is a diagonal matrix with the eigenvalues on A on the diagonal sorted by their sign
469 % [d+ ] 469 % [d+ ]
470 % D = [ d0 ] 470 % D = [ d0 ]
471 % [ d-] 471 % [ d-]
476 if(sum(abs(x_1))>eps) 476 if(sum(abs(x_1))>eps)
477 syms x_1s 477 syms x_1s
478 else 478 else
479 x_1s = 0; 479 x_1s = 0;
480 end 480 end
481 481
482 if(sum(abs(x_2))>eps) 482 if(sum(abs(x_2))>eps)
483 syms x_2s; 483 syms x_2s;
484 else 484 else
485 x_2s = 0; 485 x_2s = 0;
486 end 486 end
487 487
488 488
489 if(sum(abs(y_1))>eps) 489 if(sum(abs(y_1))>eps)
490 syms y_1s 490 syms y_1s
491 else 491 else
492 y_1s = 0; 492 y_1s = 0;
493 end 493 end
494 494
495 if(sum(abs(y_2))>eps) 495 if(sum(abs(y_2))>eps)
496 syms y_2s; 496 syms y_2s;
497 else 497 else
498 y_2s = 0; 498 y_2s = 0;
499 end 499 end
500 500
501 if(sum(abs(z_1))>eps) 501 if(sum(abs(z_1))>eps)
502 syms z_1s 502 syms z_1s
503 else 503 else
504 z_1s = 0; 504 z_1s = 0;
505 end 505 end
506 506
507 if(sum(abs(z_2))>eps) 507 if(sum(abs(z_2))>eps)
508 syms z_2s; 508 syms z_2s;
509 else 509 else
510 z_2s = 0; 510 z_2s = 0;
511 end 511 end
512 512
513 syms xs ys zs 513 syms xs ys zs
514 [V, D] = eig(mat(obj,xs,ys,zs,x_1s,x_2s,y_1s,y_2s,z_1s,z_2s)); 514 [V, D] = eig(mat(obj,xs,ys,zs,x_1s,x_2s,y_1s,y_2s,z_1s,z_2s));
515 Vi = inv(V); 515 Vi = inv(V);
516 xs = x; 516 xs = x;
517 ys = y; 517 ys = y;
520 x_2s = x_2; 520 x_2s = x_2;
521 y_1s = y_1; 521 y_1s = y_1;
522 y_2s = y_2; 522 y_2s = y_2;
523 z_1s = z_1; 523 z_1s = z_1;
524 z_2s = z_2; 524 z_2s = z_2;
525 525
526 side = max(length(x),length(y)); 526 side = max(length(x),length(y));
527 Dret = zeros(obj.n,side*obj.n); 527 Dret = zeros(obj.n,side*obj.n);
528 Vret = zeros(obj.n,side*obj.n); 528 Vret = zeros(obj.n,side*obj.n);
529 Viret = zeros(obj.n,side*obj.n); 529 Viret = zeros(obj.n,side*obj.n);
530 530
531 for ii=1:obj.n 531 for ii=1:obj.n
532 for jj=1:obj.n 532 for jj=1:obj.n
533 Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii)); 533 Dret(jj,(ii-1)*side+1:side*ii) = eval(D(jj,ii));
534 Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii)); 534 Vret(jj,(ii-1)*side+1:side*ii) = eval(V(jj,ii));
535 Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii)); 535 Viret(jj,(ii-1)*side+1:side*ii) = eval(Vi(jj,ii));
536 end 536 end
537 end 537 end
538 538
539 D = sparse(Dret); 539 D = sparse(Dret);
540 V = sparse(Vret); 540 V = sparse(Vret);
541 Vi = sparse(Viret); 541 Vi = sparse(Viret);
542 V = obj.evaluateCoefficientMatrix(V,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); 542 V = obj.evaluateCoefficientMatrix(V,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2);
543 D = obj.evaluateCoefficientMatrix(D,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); 543 D = obj.evaluateCoefficientMatrix(D,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2);
544 Vi = obj.evaluateCoefficientMatrix(Vi,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2); 544 Vi = obj.evaluateCoefficientMatrix(Vi,x,y,z,x_1,x_2,y_1,y_2,z_1,z_2);
545 DD = diag(D); 545 DD = diag(D);
546 546
547 poseig = (DD>0); 547 poseig = (DD>0);
548 zeroeig = (DD==0); 548 zeroeig = (DD==0);
549 negeig = (DD<0); 549 negeig = (DD<0);
550 550
551 D = diag([DD(poseig); DD(zeroeig); DD(negeig)]); 551 D = diag([DD(poseig); DD(zeroeig); DD(negeig)]);
552 V = [V(:,poseig) V(:,zeroeig) V(:,negeig)]; 552 V = [V(:,poseig) V(:,zeroeig) V(:,negeig)];
553 Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)]; 553 Vi = [Vi(poseig,:); Vi(zeroeig,:); Vi(negeig,:)];
554 signVec = [sum(poseig),sum(zeroeig),sum(negeig)]; 554 signVec = [sum(poseig),sum(zeroeig),sum(negeig)];
555 end 555 end