Mercurial > repos > public > sbplib
diff +rv/+time/RungekuttaExteriorRv.m @ 1152:010bb2677230 feature/rv
Clean up in +rv/+time. Make the time stepping more efficient by not storing unnessecary properties in the RK-RV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 05 Mar 2019 10:53:34 +0100 |
parents | 2ef20d00b386 |
children | 3108963cc42c |
line wrap: on
line diff
--- a/+rv/+time/RungekuttaExteriorRv.m Mon Feb 18 09:00:00 2019 +0100 +++ b/+rv/+time/RungekuttaExteriorRv.m Tue Mar 05 10:53:34 2019 +0100 @@ -6,22 +6,8 @@ v % Solution vector n % Time level coeffs % The coefficents used for the RK time integration - - % Properties related to the residual viscositys RV % Residual Viscosity operator - v_prev % Solution vector at previous time levels, used for the RV evaluation DvDt % Function for computing the time deriative used for the RV evaluation - lowerBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. - % dictates which accuracy the boot-strapping should start from. - upperBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. - % Dictates the order of accuracy used once the boot-strapping is complete. - - % Convenience properties. Only for plotting - viscosity % Total viscosity - residualViscosity % Residual viscosity - firstOrderViscosity % first order viscosity - dvdt % Evaluated time derivative in residual - Df % Evaluated flux in residual end methods @@ -38,8 +24,6 @@ obj.RV = RV; obj.DvDt = DvDt; - obj.dvdt = obj.DvDt(obj.v); - [obj.viscosity, obj.Df, obj.firstOrderViscosity, obj.residualViscosity] = RV.evaluate(obj.v,obj.dvdt); end function [v, t] = getV(obj) @@ -48,15 +32,16 @@ end function state = getState(obj) - state = struct('v', obj.v, 'dvdt', obj.dvdt, 'Df', obj.Df, 'viscosity', obj.viscosity, 'residualViscosity', obj.residualViscosity, 'firstOrderViscosity', obj.firstOrderViscosity, 't', obj.t); + dvdt = obj.DvDt(obj.v); + [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt); + state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t); end + % Advances the solution vector one time step using the Runge-Kutta method given by + % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps function obj = step(obj) - obj.dvdt = obj.DvDt(obj.v); - [obj.viscosity, obj.Df, obj.firstOrderViscosity, obj.residualViscosity] = obj.RV.evaluate(obj.v,obj.dvdt); - % Fix the viscosity of the RHS function F - F_visc = @(v,t) obj.F(v,t,obj.viscosity); + F_visc = @(v,t) obj.F(v,t,obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v))); obj.v = time.rk.rungekutta(obj.v, obj.t, obj.k, F_visc, obj.coeffs); obj.t = obj.t + obj.k; obj.n = obj.n + 1;