Mercurial > repos > public > sbplib
comparison +rv/+time/RungekuttaExteriorRv.m @ 1152:010bb2677230 feature/rv
Clean up in +rv/+time. Make the time stepping more efficient by not storing unnessecary properties in the RK-RV time steppers
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 05 Mar 2019 10:53:34 +0100 |
parents | 2ef20d00b386 |
children | 3108963cc42c |
comparison
equal
deleted
inserted
replaced
1151:03ecf18d035f | 1152:010bb2677230 |
---|---|
4 k % Time step | 4 k % Time step |
5 t % Time point | 5 t % Time point |
6 v % Solution vector | 6 v % Solution vector |
7 n % Time level | 7 n % Time level |
8 coeffs % The coefficents used for the RK time integration | 8 coeffs % The coefficents used for the RK time integration |
9 | |
10 % Properties related to the residual viscositys | |
11 RV % Residual Viscosity operator | 9 RV % Residual Viscosity operator |
12 v_prev % Solution vector at previous time levels, used for the RV evaluation | |
13 DvDt % Function for computing the time deriative used for the RV evaluation | 10 DvDt % Function for computing the time deriative used for the RV evaluation |
14 lowerBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. | |
15 % dictates which accuracy the boot-strapping should start from. | |
16 upperBdfOrder % Orders of the approximation of the time deriative, used for the RV evaluation. | |
17 % Dictates the order of accuracy used once the boot-strapping is complete. | |
18 | |
19 % Convenience properties. Only for plotting | |
20 viscosity % Total viscosity | |
21 residualViscosity % Residual viscosity | |
22 firstOrderViscosity % first order viscosity | |
23 dvdt % Evaluated time derivative in residual | |
24 Df % Evaluated flux in residual | |
25 end | 11 end |
26 methods | 12 methods |
27 | 13 |
28 function obj = RungekuttaExteriorRv(F, k, t0, v0, RV, DvDt, order) | 14 function obj = RungekuttaExteriorRv(F, k, t0, v0, RV, DvDt, order) |
29 obj.F = F; | 15 obj.F = F; |
36 [s,a,b,c] = time.rk.butcherTableau(order); | 22 [s,a,b,c] = time.rk.butcherTableau(order); |
37 obj.coeffs = struct('s',s,'a',a,'b',b,'c',c); | 23 obj.coeffs = struct('s',s,'a',a,'b',b,'c',c); |
38 | 24 |
39 obj.RV = RV; | 25 obj.RV = RV; |
40 obj.DvDt = DvDt; | 26 obj.DvDt = DvDt; |
41 obj.dvdt = obj.DvDt(obj.v); | |
42 [obj.viscosity, obj.Df, obj.firstOrderViscosity, obj.residualViscosity] = RV.evaluate(obj.v,obj.dvdt); | |
43 end | 27 end |
44 | 28 |
45 function [v, t] = getV(obj) | 29 function [v, t] = getV(obj) |
46 v = obj.v; | 30 v = obj.v; |
47 t = obj.t; | 31 t = obj.t; |
48 end | 32 end |
49 | 33 |
50 function state = getState(obj) | 34 function state = getState(obj) |
51 state = struct('v', obj.v, 'dvdt', obj.dvdt, 'Df', obj.Df, 'viscosity', obj.viscosity, 'residualViscosity', obj.residualViscosity, 'firstOrderViscosity', obj.firstOrderViscosity, 't', obj.t); | 35 dvdt = obj.DvDt(obj.v); |
36 [viscosity, Df, firstOrderViscosity, residualViscosity] = obj.RV.evaluate(obj.v, dvdt); | |
37 state = struct('v', obj.v, 'dvdt', dvdt, 'Df', Df, 'viscosity', viscosity, 'residualViscosity', residualViscosity, 'firstOrderViscosity', firstOrderViscosity, 't', obj.t); | |
52 end | 38 end |
53 | 39 |
40 % Advances the solution vector one time step using the Runge-Kutta method given by | |
41 % obj.coeffs, using a fixed residual viscosity for the Runge-Kutta substeps | |
54 function obj = step(obj) | 42 function obj = step(obj) |
55 obj.dvdt = obj.DvDt(obj.v); | |
56 [obj.viscosity, obj.Df, obj.firstOrderViscosity, obj.residualViscosity] = obj.RV.evaluate(obj.v,obj.dvdt); | |
57 | |
58 % Fix the viscosity of the RHS function F | 43 % Fix the viscosity of the RHS function F |
59 F_visc = @(v,t) obj.F(v,t,obj.viscosity); | 44 F_visc = @(v,t) obj.F(v,t,obj.RV.evaluateViscosity(obj.v, obj.DvDt(obj.v))); |
60 obj.v = time.rk.rungekutta(obj.v, obj.t, obj.k, F_visc, obj.coeffs); | 45 obj.v = time.rk.rungekutta(obj.v, obj.t, obj.k, F_visc, obj.coeffs); |
61 obj.t = obj.t + obj.k; | 46 obj.t = obj.t + obj.k; |
62 obj.n = obj.n + 1; | 47 obj.n = obj.n + 1; |
63 end | 48 end |
64 end | 49 end |