Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_compatible_halfvariable_2.m @ 267:f7ac3cd6eeaa operator_remake
Sparsified all implementation files, removed all matlab warnings, fixed small bugs on minimum grid points.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 14:53:41 +0200 |
parents | bfa130b7abf6 |
children |
comparison
equal
deleted
inserted
replaced
266:bfa130b7abf6 | 267:f7ac3cd6eeaa |
---|---|
25 % randsplutningar f?r D1 och D2 | 25 % randsplutningar f?r D1 och D2 |
26 | 26 |
27 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, | 27 % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, |
28 % vilket ?r n?dv?ndigt f?r stabilitet | 28 % vilket ?r n?dv?ndigt f?r stabilitet |
29 | 29 |
30 BP = 1; | 30 BP = 4; |
31 if(m<2*BP) | 31 if(m<2*BP) |
32 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | 32 error(['Operator requires at least ' num2str(2*BP) ' grid points']); |
33 end | 33 end |
34 | 34 |
35 H=diag(ones(m,1),0);H(1,1)=1/2;H(m,m)=1/2; | 35 H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2; |
36 | 36 |
37 | 37 |
38 H=H*h; | 38 H=H*h; |
39 HI=inv(H); | 39 HI=inv(H); |
40 | 40 |
41 | 41 |
42 % First derivative SBP operator, 1st order accurate at first 6 boundary points | 42 % First derivative SBP operator, 1st order accurate at first 6 boundary points |
43 | 43 |
44 q1=1/2; | 44 q1=1/2; |
45 Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | 45 % Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); |
46 stencil = [-q1,0,q1]; | |
47 d = (length(stencil)-1)/2; | |
48 diags = -d:d; | |
49 Q = stripeMatrix(stencil, diags, m); | |
46 | 50 |
47 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); | 51 %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); |
48 | 52 |
49 | 53 |
50 e_1=zeros(m,1);e_1(1)=1; | 54 e_1=sparse(m,1);e_1(1)=1; |
51 e_m=zeros(m,1);e_m(m)=1; | 55 e_m=sparse(m,1);e_m(m)=1; |
52 | 56 |
53 | 57 |
54 D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; | 58 D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; |
55 | 59 |
56 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | 60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
57 | 61 |
58 | 62 |
59 | 63 |
67 | 71 |
68 % Below for variable coefficients | 72 % Below for variable coefficients |
69 % Require a vector c with the koeffients | 73 % Require a vector c with the koeffients |
70 | 74 |
71 S_U=[-3/2 2 -1/2]/h; | 75 S_U=[-3/2 2 -1/2]/h; |
72 S_1=zeros(1,m); | 76 S_1=sparse(1,m); |
73 S_1(1:3)=S_U; | 77 S_1(1:3)=S_U; |
74 S_m=zeros(1,m); | 78 S_m=sparse(1,m); |
75 S_m(m-2:m)=fliplr(-S_U); | 79 S_m(m-2:m)=fliplr(-S_U); |
76 | 80 |
77 S_1 = S_1'; | 81 S_1 = S_1'; |
78 S_m = S_m'; | 82 S_m = S_m'; |
79 | 83 |
113 | 117 |
114 | 118 |
115 % Third derivative, 1st order accurate at first 6 boundary points | 119 % Third derivative, 1st order accurate at first 6 boundary points |
116 | 120 |
117 q2=1/2;q1=-1; | 121 q2=1/2;q1=-1; |
118 Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); | 122 % Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); |
123 stencil = [-q2,-q1,0,q1,q2]; | |
124 d = (length(stencil)-1)/2; | |
125 diags = -d:d; | |
126 Q3 = stripeMatrix(stencil, diags, m); | |
119 | 127 |
120 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); | 128 %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); |
121 | 129 |
122 | 130 |
123 Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; | 131 Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; |
124 Q3(1:4,1:4)=Q3_U; | 132 Q3(1:4,1:4)=Q3_U; |
125 Q3(m-3:m,m-3:m)=flipud( fliplr( -Q3_U ) ); | 133 Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); |
126 Q3=Q3/h^2; | 134 Q3=Q3/h^2; |
127 | 135 |
128 | 136 |
129 | 137 |
130 S2_U=[1 -2 1;]/h^2; | 138 S2_U=[1 -2 1;]/h^2; |
131 S2_1=zeros(1,m); | 139 S2_1=sparse(1,m); |
132 S2_1(1:3)=S2_U; | 140 S2_1(1:3)=S2_U; |
133 S2_m=zeros(1,m); | 141 S2_m=sparse(1,m); |
134 S2_m(m-2:m)=fliplr(S2_U); | 142 S2_m(m-2:m)=fliplr(S2_U); |
135 S2_1 = S2_1'; | 143 S2_1 = S2_1'; |
136 S2_m = S2_m'; | 144 S2_m = S2_m'; |
137 | 145 |
138 | 146 |
139 | 147 |
140 D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*S_1*S_1' -1/2*S_m*S_m' ) ; | 148 D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*(S_1*S_1') -1/2*(S_m*S_m') ) ; |
141 | 149 |
142 % Fourth derivative, 0th order accurate at first 6 boundary points (still | 150 % Fourth derivative, 0th order accurate at first 6 boundary points (still |
143 % yield 4th order convergence if stable: for example u_tt=-u_xxxx | 151 % yield 4th order convergence if stable: for example u_tt=-u_xxxx |
144 | 152 |
145 m2=1;m1=-4;m0=6; | 153 m2=1;m1=-4;m0=6; |
146 M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); | 154 % M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); |
155 stencil = [m2,m1,m0,m1,m2]; | |
156 d = (length(stencil)-1)/2; | |
157 diags = -d:d; | |
158 M4 = stripeMatrix(stencil, diags, m); | |
147 | 159 |
148 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); | 160 %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); |
149 | 161 |
150 M4_U=[0.13e2 / 0.10e2 -0.12e2 / 0.5e1 0.9e1 / 0.10e2 0.1e1 / 0.5e1; -0.12e2 / 0.5e1 0.26e2 / 0.5e1 -0.16e2 / 0.5e1 0.2e1 / 0.5e1; 0.9e1 / 0.10e2 -0.16e2 / 0.5e1 0.47e2 / 0.10e2 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; | 162 M4_U=[0.13e2 / 0.10e2 -0.12e2 / 0.5e1 0.9e1 / 0.10e2 0.1e1 / 0.5e1; -0.12e2 / 0.5e1 0.26e2 / 0.5e1 -0.16e2 / 0.5e1 0.2e1 / 0.5e1; 0.9e1 / 0.10e2 -0.16e2 / 0.5e1 0.47e2 / 0.10e2 -0.17e2 / 0.5e1; 0.1e1 / 0.5e1 0.2e1 / 0.5e1 -0.17e2 / 0.5e1 0.29e2 / 0.5e1;]; |
151 | 163 |
152 | 164 |
153 M4(1:4,1:4)=M4_U; | 165 M4(1:4,1:4)=M4_U; |
154 | 166 |
155 M4(m-3:m,m-3:m)=flipud( fliplr( M4_U ) ); | 167 M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); |
156 M4=M4/h^3; | 168 M4=M4/h^3; |
157 | 169 |
158 S3_U=[-1 3 -3 1;]/h^3; | 170 S3_U=[-1 3 -3 1;]/h^3; |
159 S3_1=zeros(1,m); | 171 S3_1=sparse(1,m); |
160 S3_1(1:4)=S3_U; | 172 S3_1(1:4)=S3_U; |
161 S3_m=zeros(1,m); | 173 S3_m=sparse(1,m); |
162 S3_m(m-3:m)=fliplr(-S3_U); | 174 S3_m(m-3:m)=fliplr(-S3_U); |
163 S3_1 = S3_1'; | 175 S3_1 = S3_1'; |
164 S3_m = S3_m'; | 176 S3_m = S3_m'; |
165 | 177 |
166 D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); | 178 D4=HI*(M4-e_1*S3_1'+e_m*S3_m' + S_1*S2_1'-S_m*S2_m'); |