Mercurial > repos > public > sbplib
diff +sbp/+implementations/d4_compatible_halfvariable_2.m @ 267:f7ac3cd6eeaa operator_remake
Sparsified all implementation files, removed all matlab warnings, fixed small bugs on minimum grid points.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 14:53:41 +0200 |
parents | bfa130b7abf6 |
children |
line wrap: on
line diff
--- a/+sbp/+implementations/d4_compatible_halfvariable_2.m Fri Sep 09 11:03:13 2016 +0200 +++ b/+sbp/+implementations/d4_compatible_halfvariable_2.m Fri Sep 09 14:53:41 2016 +0200 @@ -27,12 +27,12 @@ % Vi b?rjar med normen. Notera att alla SBP operatorer delar samma norm, % vilket ?r n?dv?ndigt f?r stabilitet - BP = 1; + BP = 4; if(m<2*BP) error(['Operator requires at least ' num2str(2*BP) ' grid points']); end - H=diag(ones(m,1),0);H(1,1)=1/2;H(m,m)=1/2; + H=speye(m,m);H(1,1)=1/2;H(m,m)=1/2; H=H*h; @@ -42,16 +42,20 @@ % First derivative SBP operator, 1st order accurate at first 6 boundary points q1=1/2; - Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); +% Q=q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); + stencil = [-q1,0,q1]; + d = (length(stencil)-1)/2; + diags = -d:d; + Q = stripeMatrix(stencil, diags, m); %Q=(-1/12*diag(ones(m-2,1),2)+8/12*diag(ones(m-1,1),1)-8/12*diag(ones(m-1,1),-1)+1/12*diag(ones(m-2,1),-2)); - e_1=zeros(m,1);e_1(1)=1; - e_m=zeros(m,1);e_m(m)=1; + e_1=sparse(m,1);e_1(1)=1; + e_m=sparse(m,1);e_m(m)=1; - D1=HI*(Q-1/2*e_1*e_1'+1/2*e_m*e_m') ; + D1=HI*(Q-1/2*(e_1*e_1')+1/2*(e_m*e_m')) ; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -69,9 +73,9 @@ % Require a vector c with the koeffients S_U=[-3/2 2 -1/2]/h; - S_1=zeros(1,m); + S_1=sparse(1,m); S_1(1:3)=S_U; - S_m=zeros(1,m); + S_m=sparse(1,m); S_m(m-2:m)=fliplr(-S_U); S_1 = S_1'; @@ -115,35 +119,43 @@ % Third derivative, 1st order accurate at first 6 boundary points q2=1/2;q1=-1; - Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); +% Q3=q2*(diag(ones(m-2,1),2)-diag(ones(m-2,1),-2))+q1*(diag(ones(m-1,1),1)-diag(ones(m-1,1),-1)); + stencil = [-q2,-q1,0,q1,q2]; + d = (length(stencil)-1)/2; + diags = -d:d; + Q3 = stripeMatrix(stencil, diags, m); %QQ3=(-1/8*diag(ones(m-3,1),3) + 1*diag(ones(m-2,1),2) - 13/8*diag(ones(m-1,1),1) +13/8*diag(ones(m-1,1),-1) -1*diag(ones(m-2,1),-2) + 1/8*diag(ones(m-3,1),-3)); Q3_U = [0 -0.13e2 / 0.16e2 0.7e1 / 0.8e1 -0.1e1 / 0.16e2; 0.13e2 / 0.16e2 0 -0.23e2 / 0.16e2 0.5e1 / 0.8e1; -0.7e1 / 0.8e1 0.23e2 / 0.16e2 0 -0.17e2 / 0.16e2; 0.1e1 / 0.16e2 -0.5e1 / 0.8e1 0.17e2 / 0.16e2 0;]; Q3(1:4,1:4)=Q3_U; - Q3(m-3:m,m-3:m)=flipud( fliplr( -Q3_U ) ); + Q3(m-3:m,m-3:m)=rot90( -Q3_U ,2 ); Q3=Q3/h^2; S2_U=[1 -2 1;]/h^2; - S2_1=zeros(1,m); + S2_1=sparse(1,m); S2_1(1:3)=S2_U; - S2_m=zeros(1,m); + S2_m=sparse(1,m); S2_m(m-2:m)=fliplr(S2_U); S2_1 = S2_1'; S2_m = S2_m'; - D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*S_1*S_1' -1/2*S_m*S_m' ) ; + D3=HI*(Q3 - e_1*S2_1' + e_m*S2_m' +1/2*(S_1*S_1') -1/2*(S_m*S_m') ) ; % Fourth derivative, 0th order accurate at first 6 boundary points (still % yield 4th order convergence if stable: for example u_tt=-u_xxxx m2=1;m1=-4;m0=6; - M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); +% M4=m2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2))+m1*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1))+m0*diag(ones(m,1),0); + stencil = [m2,m1,m0,m1,m2]; + d = (length(stencil)-1)/2; + diags = -d:d; + M4 = stripeMatrix(stencil, diags, m); %M4=(-1/6*(diag(ones(m-3,1),3)+diag(ones(m-3,1),-3) ) + 2*(diag(ones(m-2,1),2)+diag(ones(m-2,1),-2)) -13/2*(diag(ones(m-1,1),1)+diag(ones(m-1,1),-1)) + 28/3*diag(ones(m,1),0)); @@ -152,13 +164,13 @@ M4(1:4,1:4)=M4_U; - M4(m-3:m,m-3:m)=flipud( fliplr( M4_U ) ); + M4(m-3:m,m-3:m)=rot90( M4_U ,2 ); M4=M4/h^3; S3_U=[-1 3 -3 1;]/h^3; - S3_1=zeros(1,m); + S3_1=sparse(1,m); S3_1(1:4)=S3_U; - S3_m=zeros(1,m); + S3_m=sparse(1,m); S3_m(m-3:m)=fliplr(-S3_U); S3_1 = S3_1'; S3_m = S3_m';