Mercurial > repos > public > sbplib
comparison diracDiscr.m @ 1238:dea852e85b77 feature/dirac_discr
Merge with refactorization of computing source indices
author | Vidar Stiernström <vidar.stiernstrom@it.uu.se> |
---|---|
date | Tue, 19 Nov 2019 16:06:03 -0800 |
parents | f1806475498b 6e4cc4b66de0 |
children | a0940c1db455 d1b201fe328e |
comparison
equal
deleted
inserted
replaced
1234:f1806475498b | 1238:dea852e85b77 |
---|---|
37 % Return zeros if x0 is outside grid | 37 % Return zeros if x0 is outside grid |
38 if x_s < x(1) || x_s > x(end) | 38 if x_s < x(1) || x_s > x(end) |
39 ret = zeros(size(x)); | 39 ret = zeros(size(x)); |
40 return | 40 return |
41 else | 41 else |
42 | |
43 fnorm = diag(H); | |
44 tot_order = m_order+s_order; %This is equiv. to the number of equations solved for | 42 tot_order = m_order+s_order; %This is equiv. to the number of equations solved for |
45 S = []; | 43 S = []; |
46 M = []; | 44 M = []; |
47 | 45 |
48 % Get interior grid spacing | 46 % Get interior grid spacing |
49 middle = floor(m/2); | 47 middle = floor(m/2); |
50 h = x(middle+1) - x(middle); % Use middle point to allow for staggerd grids. | 48 h = x(middle+1) - x(middle); % Use middle point to allow for staggered grids. |
51 | 49 |
52 % Find the indices that are within range of of the point source location | 50 index = sourceIndices(x_s, x, tot_order, h); |
53 ind_delta = find(tot_order*h/2 >= abs(x-x_s)); | |
54 | 51 |
55 % Ensure that ind_delta is not too long | 52 polynomial = (x(index)-x(index(1)))/(x(index(end))-x(index(1))); |
56 if length(ind_delta) == (tot_order + 2) | 53 x_0 = (x_s-x(index(1)))/(x(index(end))-x(index(1))); |
57 ind_delta = ind_delta(2:end-1); | 54 |
58 elseif length(ind_delta) == (tot_order + 1) | 55 quadrature = diag(H); |
59 ind_delta = ind_delta(1:end-1); | 56 quadrature_weights = quadrature(index)/h; |
60 end | |
61 | |
62 % Use first tot_order grid points | |
63 if length(ind_delta)<tot_order && x_s < x(1) + ceil(tot_order/2)*h | |
64 index=1:tot_order; | |
65 polynomial=(x(1:tot_order)-x(1))/(x(tot_order)-x(1)); | |
66 x_0=(x_s-x(1))/(x(tot_order)-x(1)); | |
67 norm=fnorm(1:tot_order)/h; | |
68 | |
69 % Use last tot_order grid points | |
70 elseif length(ind_delta)<tot_order && x_s > x(end) - ceil(tot_order/2)*h | |
71 index = length(x)-tot_order+1:length(x); | |
72 polynomial = (x(end-tot_order+1:end)-x(end-tot_order+1))/(x(end)-x(end-tot_order+1)); | |
73 norm = fnorm(end-tot_order+1:end)/h; | |
74 x_0 = (x_s-x(end-tot_order+1))/(x(end)-x(end-tot_order+1)); | |
75 | |
76 % Interior, compensate for round-off errors. | |
77 elseif length(ind_delta) < tot_order | |
78 if ind_delta(end)<m | |
79 ind_delta = [ind_delta; ind_delta(end)+1]; | |
80 else | |
81 ind_delta = [ind_delta(1)-1; ind_delta]; | |
82 end | |
83 polynomial = (x(ind_delta)-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); | |
84 x_0 = (x_s-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); | |
85 norm = fnorm(ind_delta)/h; | |
86 index = ind_delta; | |
87 | |
88 % Interior | |
89 else | |
90 polynomial = (x(ind_delta)-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); | |
91 x_0 = (x_s-x(ind_delta(1)))/(x(ind_delta(end))-x(ind_delta(1))); | |
92 norm = fnorm(ind_delta)/h; | |
93 index = ind_delta; | |
94 end | |
95 | 57 |
96 h_polynomial = polynomial(2)-polynomial(1); | 58 h_polynomial = polynomial(2)-polynomial(1); |
97 b = zeros(m_order+s_order,1); | 59 b = zeros(tot_order,1); |
98 | 60 |
99 for i = 1:m_order | 61 for i = 1:m_order |
100 b(i,1) = x_0^(i-1); | 62 b(i,1) = x_0^(i-1); |
101 end | 63 end |
102 | 64 |
103 for i = 1:(m_order+s_order) | 65 for i = 1:tot_order |
104 for j = 1:m_order | 66 for j = 1:m_order |
105 M(j,i) = polynomial(i)^(j-1)*h_polynomial*norm(i); | 67 M(j,i) = polynomial(i)^(j-1)*h_polynomial*quadrature_weights(i); |
106 end | 68 end |
107 end | 69 end |
108 | 70 |
109 for i = 1:(m_order+s_order) | 71 for i = 1:tot_order |
110 for j = 1:s_order | 72 for j = 1:s_order |
111 S(j,i) = (-1)^(i-1)*polynomial(i)^(j-1); | 73 S(j,i) = (-1)^(i-1)*polynomial(i)^(j-1); |
112 end | 74 end |
113 end | 75 end |
114 | 76 |
118 ret = x*0; | 80 ret = x*0; |
119 ret(index) = d/h*h_polynomial; | 81 ret(index) = d/h*h_polynomial; |
120 end | 82 end |
121 | 83 |
122 end | 84 end |
85 | |
86 | |
87 function I = sourceIndices(x_s, x, tot_order, h) | |
88 % Find the indices that are within range of of the point source location | |
89 I = find(tot_order*h/2 >= abs(x-x_s)); | |
90 | |
91 if length(I) > tot_order | |
92 if length(I) == tot_order + 2 | |
93 I = I(2:end-1); | |
94 elseif length(I) == tot_order + 1 | |
95 I = I(1:end-1); | |
96 end | |
97 elseif length(I) < tot_order | |
98 if x_s < x(1) + ceil(tot_order/2)*h | |
99 I = 1:tot_order; | |
100 elseif x_s > x(end) - ceil(tot_order/2)*h | |
101 I = length(x)-tot_order+1:length(x); | |
102 else | |
103 if I(end) < length(x) | |
104 I = [I; I(end)+1]; | |
105 else | |
106 I = [I(1)-1; I]; | |
107 end | |
108 end | |
109 end | |
110 end |