view diracDiscr.m @ 1237:6e4cc4b66de0 feature/dirac_discr

Remove overloading of norm() and fnorm
author Jonatan Werpers <jonatan@werpers.com>
date Wed, 20 Nov 2019 00:13:56 +0100
parents 3722c2579818
children dea852e85b77
line wrap: on
line source


function d = diracDiscr(x_s, x, m_order, s_order, H)
    % n-dimensional delta function
    % x_s: source point coordinate vector, e.g. [x, y] or [x, y, z].
    % x: cell array of grid point column vectors for each dimension.
    % m_order: Number of moment conditions
    % s_order: Number of smoothness conditions
    % H: cell array of 1D norm matrices

    dim = length(x_s);
    d_1D = cell(dim,1);

    % If 1D, non-cell input is accepted
    if dim == 1 && ~iscell(x)
        d = diracDiscr1D(x_s, x, m_order, s_order, H);

    else
        for i = 1:dim
            d_1D{i} = diracDiscr1D(x_s(i), x{i}, m_order, s_order, H{i});
        end

        d = d_1D{dim};
        for i = dim-1: -1: 1
            % Perform outer product, transpose, and then turn into column vector
            d = (d_1D{i}*d')';
            d = d(:);
        end
    end

end


% Helper function for 1D delta functions
function ret = diracDiscr1D(x_s , x , m_order, s_order, H)

    m = length(x);

    % Return zeros if x0 is outside grid
    if(x_s < x(1) || x_s > x(end) )

        ret = zeros(size(x));

    else
        tot_order = m_order+s_order; %This is equiv. to the number of equations solved for
        S = [];
        M = [];

        % Get interior grid spacing
        middle = floor(m/2);
        h = x(middle+1) - x(middle);

        index = sourceIndecies(x_s, x, tot_order, h)

        polynomial = (x(index)-x(index(1)))/(x(index(end))-x(index(1)));
        x_0 = (x_s-x(index(1)))/(x(index(end))-x(index(1)));
        
        quadrature = diag(H);
        quadrature_weights = quadrature(index)/h;

        h_polynomial = polynomial(2)-polynomial(1);
        b = zeros(tot_order,1);

        for i = 1:m_order
            b(i,1) = x_0^(i-1);
        end

        for i = 1:tot_order
            for j = 1:m_order
                M(j,i) = polynomial(i)^(j-1)*h_polynomial*quadrature_weights(i);
            end
        end

        for i = 1:tot_order
            for j = 1:s_order
                S(j,i) = (-1)^(i-1)*polynomial(i)^(j-1);
            end
        end

        A = [M;S];

        d = A\b;
        ret = x*0;
        ret(index) = d/h*h_polynomial;
    end

end


function I = sourceIndecies(x_s, x, tot_order, h)
    % Find the indices that are within range of of the point source location
    I = find(tot_order*h/2 >= abs(x-x_s));

    if length(I) > tot_order
        if length(I) == tot_order + 2
            I = I(2:end-1);
        elseif length(I) == tot_order + 1
            I = I(1:end-1);
        end
    elseif length(I) < tot_order
        if x_s < x(1) + ceil(tot_order/2)*h;
            I = 1:tot_order;
        elseif x_s > x(end) - ceil(tot_order/2)*h;
            I = length(x)-tot_order+1:length(x);
        else
            if I(end) < length(x)
                I = [I; I(end)+1];
            else
                I = [I(1)-1; I];
            end
        end
    end
end