Mercurial > repos > public > sbplib
view diracDiscr.m @ 1237:6e4cc4b66de0 feature/dirac_discr
Remove overloading of norm() and fnorm
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Wed, 20 Nov 2019 00:13:56 +0100 |
parents | 3722c2579818 |
children | dea852e85b77 |
line wrap: on
line source
function d = diracDiscr(x_s, x, m_order, s_order, H) % n-dimensional delta function % x_s: source point coordinate vector, e.g. [x, y] or [x, y, z]. % x: cell array of grid point column vectors for each dimension. % m_order: Number of moment conditions % s_order: Number of smoothness conditions % H: cell array of 1D norm matrices dim = length(x_s); d_1D = cell(dim,1); % If 1D, non-cell input is accepted if dim == 1 && ~iscell(x) d = diracDiscr1D(x_s, x, m_order, s_order, H); else for i = 1:dim d_1D{i} = diracDiscr1D(x_s(i), x{i}, m_order, s_order, H{i}); end d = d_1D{dim}; for i = dim-1: -1: 1 % Perform outer product, transpose, and then turn into column vector d = (d_1D{i}*d')'; d = d(:); end end end % Helper function for 1D delta functions function ret = diracDiscr1D(x_s , x , m_order, s_order, H) m = length(x); % Return zeros if x0 is outside grid if(x_s < x(1) || x_s > x(end) ) ret = zeros(size(x)); else tot_order = m_order+s_order; %This is equiv. to the number of equations solved for S = []; M = []; % Get interior grid spacing middle = floor(m/2); h = x(middle+1) - x(middle); index = sourceIndecies(x_s, x, tot_order, h) polynomial = (x(index)-x(index(1)))/(x(index(end))-x(index(1))); x_0 = (x_s-x(index(1)))/(x(index(end))-x(index(1))); quadrature = diag(H); quadrature_weights = quadrature(index)/h; h_polynomial = polynomial(2)-polynomial(1); b = zeros(tot_order,1); for i = 1:m_order b(i,1) = x_0^(i-1); end for i = 1:tot_order for j = 1:m_order M(j,i) = polynomial(i)^(j-1)*h_polynomial*quadrature_weights(i); end end for i = 1:tot_order for j = 1:s_order S(j,i) = (-1)^(i-1)*polynomial(i)^(j-1); end end A = [M;S]; d = A\b; ret = x*0; ret(index) = d/h*h_polynomial; end end function I = sourceIndecies(x_s, x, tot_order, h) % Find the indices that are within range of of the point source location I = find(tot_order*h/2 >= abs(x-x_s)); if length(I) > tot_order if length(I) == tot_order + 2 I = I(2:end-1); elseif length(I) == tot_order + 1 I = I(1:end-1); end elseif length(I) < tot_order if x_s < x(1) + ceil(tot_order/2)*h; I = 1:tot_order; elseif x_s > x(end) - ceil(tot_order/2)*h; I = length(x)-tot_order+1:length(x); else if I(end) < length(x) I = [I; I(end)+1]; else I = [I(1)-1; I]; end end end end