Mercurial > repos > public > sbplib
comparison +scheme/Hypsyst2d.m @ 296:a6ae1b104391 feature/hypsyst
Renamed class.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Mon, 26 Sep 2016 14:21:37 +0200 |
parents | +scheme/hypsyst2d.m@da0131655035 |
children | cd30b22cee56 |
comparison
equal
deleted
inserted
replaced
295:da0131655035 | 296:a6ae1b104391 |
---|---|
1 classdef Hypsyst2d < scheme.Scheme | |
2 properties | |
3 m % Number of points in each direction, possibly a vector | |
4 n %size of system | |
5 h % Grid spacing | |
6 x,y % Grid | |
7 X,Y % Values of x and y for each grid point | |
8 order % Order accuracy for the approximation | |
9 | |
10 D % non-stabalized scheme operator | |
11 A, B, E | |
12 | |
13 H % Discrete norm | |
14 % Norms in the x and y directions | |
15 Hxi,Hyi % Kroneckerd norms. 1'*Hx*v corresponds to integration in the x dir. | |
16 I_x,I_y, I_N | |
17 e_w, e_e, e_s, e_n | |
18 params %parameters for the coeficient matrices | |
19 matrices | |
20 end | |
21 | |
22 | |
23 methods | |
24 function obj = Hypsyst2d(m, lim, order, A, B, E, params) | |
25 default_arg('E', []) | |
26 xlim = lim{1}; | |
27 ylim = lim{2}; | |
28 | |
29 if length(m) == 1 | |
30 m = [m m]; | |
31 end | |
32 | |
33 m_x = m(1); | |
34 m_y = m(2); | |
35 obj.params = params; | |
36 | |
37 obj.matrices = matrices; | |
38 | |
39 ops_x = sbp.D2Standard(m_x,xlim,order); | |
40 ops_y = sbp.D2Standard(m_y,ylim,order); | |
41 | |
42 obj.x = ops_x.x; | |
43 obj.y = ops_y.x; | |
44 | |
45 obj.X = kr(obj.x,ones(m_y,1)); | |
46 obj.Y = kr(ones(m_x,1),obj.y); | |
47 | |
48 obj.A = obj.evaluateCoefficientMatrix(matrices.A, obj.X, obj.Y); | |
49 obj.B = obj.evaluateCoefficientMatrix(matrices.B, obj.X, obj.Y); | |
50 obj.E = obj.evaluateCoefficientMatrix(matrices.E, obj.X, obj.Y); | |
51 | |
52 obj.n = length(matrices.A(obj.params,0,0)); | |
53 | |
54 I_n = eye(obj.n);I_x = speye(m_x); | |
55 obj.I_x = I_x; | |
56 I_y = speye(m_y); | |
57 obj.I_y = I_y; | |
58 | |
59 | |
60 D1_x = kr(I_n, ops_x.D1, I_y); | |
61 obj.Hxi = kr(I_n, ops_x.HI, I_y); | |
62 D1_y = kr(I_n, I_x, ops_y.D1)); | |
63 obj.Hyi = kr(I_n, I_x, ops_y.HI)); | |
64 | |
65 obj.e_w = kr(I_n, ops_x.e_l, I_y); | |
66 obj.e_e = kr(I_n, ops_x.e_r, I_y); | |
67 obj.e_s = kr(I_n, I_x, ops_y.e_l); | |
68 obj.e_n = kr(I_n, I_x, ops_y.e_r); | |
69 | |
70 obj.m=m; | |
71 obj.h=[ops_x.h ops_y.h]; | |
72 obj.order=order; | |
73 | |
74 obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E; | |
75 | |
76 end | |
77 | |
78 % Closure functions return the opertors applied to the own doamin to close the boundary | |
79 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | |
80 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | |
81 % type is a string specifying the type of boundary condition if there are several. | |
82 % data is a function returning the data that should be applied at the boundary. | |
83 function [closure, penalty] = boundary_condition(obj,boundary,type,L) | |
84 default_arg('type','char'); | |
85 switch type | |
86 case{'c','char'} | |
87 [closure,penalty]=boundary_condition_char(obj,boundary); | |
88 case{'general'} | |
89 [closure,penalty]=boundary_condition_general(obj,boundary,L); | |
90 otherwise | |
91 error('No such boundary condition') | |
92 end | |
93 end | |
94 | |
95 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) | |
96 error('An interface function does not exist yet'); | |
97 end | |
98 | |
99 function N = size(obj) | |
100 N = obj.m; | |
101 end | |
102 | |
103 function [ret] = evaluateCoefficientMatrix(obj, mat, X, Y) | |
104 params=obj.params; | |
105 | |
106 if isa(mat,'function_handle') | |
107 [rows,cols]=size(mat(params,0,0)); | |
108 matVec=mat(params,X',Y'); | |
109 matVec=sparse(matVec); | |
110 side=max(length(X),length(Y)); | |
111 else | |
112 matVec=mat; | |
113 [rows,cols]=size(matVec); | |
114 side=max(length(X),length(Y)); | |
115 cols=cols/side; | |
116 end | |
117 ret=kron(ones(rows,cols),speye(side)); | |
118 | |
119 for ii=1:rows | |
120 for jj=1:cols | |
121 ret((ii-1)*side+1:ii*side,(jj-1)*side+1:jj*side)=diag(matVec(ii,(jj-1)*side+1:jj*side)); | |
122 end | |
123 end | |
124 end | |
125 | |
126 | |
127 function [closure, penalty]=boundary_condition_char(obj,boundary) | |
128 params=obj.params; | |
129 x=obj.x; y=obj.y; | |
130 side=max(length(x),length(y)); | |
131 | |
132 switch boundary | |
133 case {'w','W','west'} | |
134 e_=obj.e_w; | |
135 mat=obj.matrices.A; | |
136 boundPos='l'; | |
137 Hi=obj.Hxi; | |
138 [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); | |
139 case {'e','E','east'} | |
140 e_=obj.e_e; | |
141 mat=obj.matrices.A; | |
142 boundPos='r'; | |
143 Hi=obj.Hxi; | |
144 [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); | |
145 case {'s','S','south'} | |
146 e_=obj.e_s; | |
147 mat=obj.matrices.B; | |
148 boundPos='l'; | |
149 Hi=obj.Hxi; | |
150 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); | |
151 case {'n','N','north'} | |
152 e_=obj.e_n; | |
153 mat=obj.matrices.B; | |
154 boundPos='r'; | |
155 Hi=obj.Hxi; | |
156 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); | |
157 end | |
158 | |
159 pos=signVec(1); zeroval=signVec(2); neg=signVec(3); | |
160 | |
161 switch boundPos | |
162 case {'l'} | |
163 tau=sparse(obj.n*side,pos*side); | |
164 Vi_plus=Vi(1:pos*side,:); | |
165 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); | |
166 closure=Hi*e_*V*tau*Vi_plus*e_'; | |
167 penalty=-Hi*e_*V*tau*Vi_plus; | |
168 case {'r'} | |
169 tau=sparse(obj.n*side,neg*side); | |
170 tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); | |
171 Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); | |
172 closure=Hi*e_*V*tau*Vi_minus*e_'; | |
173 penalty=-Hi*e_*V*tau*Vi_minus; | |
174 end | |
175 end | |
176 | |
177 | |
178 function [closure,penalty]=boundary_condition_general(obj,boundary,L) | |
179 params=obj.params; | |
180 x=obj.x; y=obj.y; | |
181 side=max(length(x),length(y)); | |
182 | |
183 switch boundary | |
184 case {'w','W','west'} | |
185 e_=obj.e_w; | |
186 mat=obj.matrices.A; | |
187 boundPos='l'; | |
188 Hi=obj.Hxi; | |
189 [V,Vi,D,signVec]=obj.matrixDiag(mat,x(1),y); | |
190 L=obj.evaluateCoefficientMatrix(L,x(1),y); | |
191 case {'e','E','east'} | |
192 e_=obj.e_e; | |
193 mat=obj.matrices.A; | |
194 boundPos='r'; | |
195 Hi=obj.Hxi; | |
196 [V,Vi,D,signVec]=obj.matrixDiag(mat,x(end),y); | |
197 L=obj.evaluateCoefficientMatrix(L,x(end),y); | |
198 case {'s','S','south'} | |
199 e_=obj.e_s; | |
200 mat=obj.matrices.B; | |
201 boundPos='l'; | |
202 Hi=obj.Hxi; | |
203 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(1)); | |
204 L=obj.evaluateCoefficientMatrix(L,x,y(1)); | |
205 case {'n','N','north'} | |
206 e_=obj.e_n; | |
207 mat=obj.matrices.B; | |
208 boundPos='r'; | |
209 Hi=obj.Hxi; | |
210 [V,Vi,D,signVec]=obj.matrixDiag(mat,x,y(end)); | |
211 L=obj.evaluateCoefficientMatrix(L,x,y(end)); | |
212 end | |
213 | |
214 pos=signVec(1); zeroval=signVec(2); neg=signVec(3); | |
215 | |
216 switch boundPos | |
217 case {'l'} | |
218 tau=sparse(obj.n*side,pos*side); | |
219 Vi_plus=Vi(1:pos*side,:); | |
220 Vi_minus=Vi(pos*side+1:obj.n*side,:); | |
221 V_plus=V(:,1:pos*side); | |
222 V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); | |
223 | |
224 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); | |
225 R=-inv(L*V_plus)*(L*V_minus); | |
226 closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; | |
227 penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; | |
228 case {'r'} | |
229 tau=sparse(obj.n*side,neg*side); | |
230 tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); | |
231 Vi_plus=Vi(1:pos*side,:); | |
232 Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); | |
233 | |
234 V_plus=V(:,1:pos*side); | |
235 V_minus=V(:,(pos+zeroval)*side+1:obj.n*side); | |
236 R=-inv(L*V_minus)*(L*V_plus); | |
237 closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; | |
238 penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; | |
239 end | |
240 end | |
241 | |
242 | |
243 function [V,Vi, D,signVec]=matrixDiag(obj,mat,x,y) | |
244 params=obj.params; | |
245 syms xs ys; | |
246 [V, D]=eig(mat(params,xs,ys)); | |
247 xs=1;ys=1; | |
248 DD=eval(diag(D)); | |
249 | |
250 poseig=find(DD>0); | |
251 zeroeig=find(DD==0); | |
252 negeig=find(DD<0); | |
253 syms xs ys | |
254 DD=diag(D); | |
255 | |
256 D=diag([DD(poseig);DD(zeroeig); DD(negeig)]); | |
257 V=[V(:,poseig) V(:,zeroeig) V(:,negeig)]; | |
258 xs=x; ys=y; | |
259 | |
260 side=max(length(x),length(y)); | |
261 Dret=zeros(obj.n,side*obj.n); | |
262 Vret=zeros(obj.n,side*obj.n); | |
263 for ii=1:obj.n | |
264 for jj=1:obj.n | |
265 Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); | |
266 Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); | |
267 end | |
268 end | |
269 | |
270 D=sparse(Dret); | |
271 V=sparse(normc(Vret)); | |
272 V=obj.evaluateCoefficientMatrix(V,x,y); | |
273 D=obj.evaluateCoefficientMatrix(D,x,y); | |
274 Vi=inv(V); | |
275 signVec=[length(poseig),length(zeroeig),length(negeig)]; | |
276 end | |
277 | |
278 end | |
279 end |