Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d4_lonely_6_2.m @ 325:72468bc9b63f feature/beams
Renamed some operator implementations.
| author | Jonatan Werpers <jonatan@werpers.com> |
|---|---|
| date | Mon, 26 Sep 2016 09:55:16 +0200 |
| parents | +sbp/+implementations/d4_variable_6_2.m@c0cbffcf6513 |
| children | b19e142fcae1 |
comparison
equal
deleted
inserted
replaced
| 324:c0cbffcf6513 | 325:72468bc9b63f |
|---|---|
| 1 function [H, HI, D4, e_l, e_r, M4, d2_l, d2_r, d3_l, d3_r, d1_l, d1_r] = d4_variable_6_2(m,h) | |
| 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 3 %%% 6:te ordn. SBP Finita differens %%% | |
| 4 %%% operatorer med diagonal norm %%% | |
| 5 %%% Extension to variable koeff %%% | |
| 6 %%% %%% | |
| 7 %%% H (Normen) %%% | |
| 8 %%% D1=H^(-1)Q (approx f?rsta derivatan) %%% | |
| 9 %%% D2 (approx andra derivatan) %%% | |
| 10 %%% D2=HI*(R+C*D*S %%% | |
| 11 %%% %%% | |
| 12 %%% R=-D1'*H*C*D1-RR %%% | |
| 13 %%% %%% | |
| 14 %%% RR ?r dissipation) %%% | |
| 15 %%% Dissipationen uppbyggd av D4: %%% | |
| 16 %%% DI=D4*B*H*D4 %%% | |
| 17 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 18 | |
| 19 % H?r med 6 RP ist?llet f?r 8 f?r D4 operatorn, dock samma randderivator | |
| 20 % Denna ?r noggrannare, och har 2a ordningens randdslutning och b?r ge 6te | |
| 21 % ordningens konvergens. Hade dock ingen fri parameter att optimera | |
| 22 | |
| 23 BP = 6; | |
| 24 if(m<2*BP) | |
| 25 error(['Operator requires at least ' num2str(2*BP) ' grid points']); | |
| 26 end | |
| 27 | |
| 28 % Norm | |
| 29 Hv = ones(m,1); | |
| 30 Hv(1:6) = [0.181e3/0.576e3, 0.1343e4/0.960e3, 0.293e3/0.480e3, 0.1811e4/0.1440e4, 0.289e3/0.320e3, 0.65e2/0.64e2]; | |
| 31 Hv(m-5:m) = rot90(Hv(1:6),2); | |
| 32 Hv = h*Hv; | |
| 33 H = spdiag(Hv, 0); | |
| 34 HI = spdiag(1./Hv, 0); | |
| 35 | |
| 36 | |
| 37 % Boundary operators | |
| 38 e_l = sparse(m,1); | |
| 39 e_l(1) = 1; | |
| 40 e_r = rot90(e_l, 2); | |
| 41 | |
| 42 d1_l = sparse(m,1); | |
| 43 d1_l(1:6) = [-0.137e3/0.60e2 5 -5 0.10e2/0.3e1 -0.5e1/0.4e1 0.1e1/0.5e1;]/h; | |
| 44 d1_r = -rot90(d1_l); | |
| 45 | |
| 46 d2_l = sparse(m,1); | |
| 47 d2_l(1:6) = [0.15e2/0.4e1 -0.77e2/0.6e1 0.107e3/0.6e1 -13 0.61e2/0.12e2 -0.5e1/0.6e1;]/h^2; | |
| 48 d2_r = rot90(d2_l, 2); | |
| 49 | |
| 50 d3_l = sparse(m,1); | |
| 51 d3_l(1:6) = [-0.17e2/0.4e1 0.71e2/0.4e1 -0.59e2/0.2e1 0.49e2/0.2e1 -0.41e2/0.4e1 0.7e1/0.4e1;]/h^3; | |
| 52 d3_r = -rot90(d3_l, 2); | |
| 53 | |
| 54 | |
| 55 % Fourth derivative, 1th order accurate at first 8 boundary points (still | |
| 56 % yield 5th order convergence if stable: for example u_tt = -u_xxxx | |
| 57 stencil = [7/240, -2/5, 169/60, -122/15, 91/8, -122/15, 169/60, -2/5, 7/240]; | |
| 58 diags = -4:4; | |
| 59 M4 = stripeMatrix(stencil, diags, m); | |
| 60 | |
| 61 M4_U = [ | |
| 62 0.1009e4/0.192e3 -0.7657e4/0.480e3 0.9307e4/0.480e3 -0.509e3/0.40e2 0.4621e4/0.960e3 -0.25e2/0.32e2; | |
| 63 -0.7657e4/0.480e3 0.49513e5/0.960e3 -0.4007e4/0.60e2 0.21799e5/0.480e3 -0.8171e4/0.480e3 0.2657e4/0.960e3; | |
| 64 0.9307e4/0.480e3 -0.4007e4/0.60e2 0.1399e4/0.15e2 -0.2721e4/0.40e2 0.12703e5/0.480e3 -0.521e3/0.120e3; | |
| 65 -0.509e3/0.40e2 0.21799e5/0.480e3 -0.2721e4/0.40e2 0.3349e4/0.60e2 -0.389e3/0.15e2 0.559e3/0.96e2; | |
| 66 0.4621e4/0.960e3 -0.8171e4/0.480e3 0.12703e5/0.480e3 -0.389e3/0.15e2 0.17857e5/0.960e3 -0.1499e4/0.160e3; | |
| 67 -0.25e2/0.32e2 0.2657e4/0.960e3 -0.521e3/0.120e3 0.559e3/0.96e2 -0.1499e4/0.160e3 0.2225e4/0.192e3; | |
| 68 ]; | |
| 69 | |
| 70 | |
| 71 M4(1:6,1:6) = M4_U; | |
| 72 M4(m-5:m,m-5:m) = rot90(M4_U, 2); | |
| 73 M4 = 1/h^3*M4; | |
| 74 | |
| 75 D4=HI*(M4 - e_l*d3_l'+e_r*d3_r' + d1_l*d2_l'-d1_r*d2_r'); | |
| 76 end |
