Mercurial > repos > public > sbplib
comparison +sbp/+implementations/d1_noneq_minimal_8.m @ 261:6009f2712d13 operator_remake
Moved and renamned all implementations.
| author | Martin Almquist <martin.almquist@it.uu.se> |
|---|---|
| date | Thu, 08 Sep 2016 15:35:45 +0200 |
| parents | |
| children | bfa130b7abf6 |
comparison
equal
deleted
inserted
replaced
| 260:b4116ce49ac4 | 261:6009f2712d13 |
|---|---|
| 1 function [D1,H,x,h] = d1_noneq_minimal_8(N,L) | |
| 2 | |
| 3 % L: Domain length | |
| 4 % N: Number of grid points | |
| 5 if(nargin < 2) | |
| 6 L = 1; | |
| 7 end | |
| 8 | |
| 9 % BP: Number of boundary points | |
| 10 % m: Number of nonequidistant spacings | |
| 11 % order: Accuracy of interior stencil | |
| 12 BP = 6; | |
| 13 m = 2; | |
| 14 order = 8; | |
| 15 | |
| 16 %%%% Non-equidistant grid points %%%%% | |
| 17 x0 = 0.0000000000000e+00; | |
| 18 x1 = 4.9439570885261e-01; | |
| 19 x2 = 1.4051531374839e+00; | |
| 20 x3 = 2.4051531374839e+00; | |
| 21 x4 = 3.4051531374839e+00; | |
| 22 x5 = 4.4051531374839e+00; | |
| 23 x6 = 5.4051531374839e+00; | |
| 24 | |
| 25 xb = zeros(m+1,1); | |
| 26 for i = 0:m | |
| 27 xb(i+1) = eval(['x' num2str(i)]); | |
| 28 end | |
| 29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 30 | |
| 31 %%%% Compute h %%%%%%%%%% | |
| 32 h = L/(2*xb(end) + N-1-2*m); | |
| 33 %%%%%%%%%%%%%%%%%%%%%%%%% | |
| 34 | |
| 35 %%%% Define grid %%%%%%%% | |
| 36 x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; | |
| 37 %%%%%%%%%%%%%%%%%%%%%%%%% | |
| 38 | |
| 39 %%%% Norm matrix %%%%%%%% | |
| 40 P = zeros(BP,1); | |
| 41 %#ok<*NASGU> | |
| 42 P0 = 1.4523997892351e-01; | |
| 43 P1 = 7.6864793350174e-01; | |
| 44 P2 = 9.9116487068535e-01; | |
| 45 P3 = 9.9992473335107e-01; | |
| 46 P4 = 1.0002097054636e+00; | |
| 47 P5 = 9.9996591555866e-01; | |
| 48 | |
| 49 for i = 0:BP-1 | |
| 50 P(i+1) = eval(['P' num2str(i)]); | |
| 51 end | |
| 52 | |
| 53 H = ones(N,1); | |
| 54 H(1:BP) = P; | |
| 55 H(end-BP+1:end) = flip(P); | |
| 56 H = spdiags(h*H,0,N,N); | |
| 57 %%%%%%%%%%%%%%%%%%%%%%%%% | |
| 58 | |
| 59 %%%% Q matrix %%%%%%%%%%% | |
| 60 | |
| 61 % interior stencil | |
| 62 switch order | |
| 63 case 2 | |
| 64 d = [-1/2,0,1/2]; | |
| 65 case 4 | |
| 66 d = [1/12,-2/3,0,2/3,-1/12]; | |
| 67 case 6 | |
| 68 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; | |
| 69 case 8 | |
| 70 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; | |
| 71 case 10 | |
| 72 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; | |
| 73 case 12 | |
| 74 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; | |
| 75 end | |
| 76 d = repmat(d,N,1); | |
| 77 Q = spdiags(d,-order/2:order/2,N,N); | |
| 78 | |
| 79 % Boundaries | |
| 80 Q0_0 = -5.0000000000000e-01; | |
| 81 Q0_1 = 6.6697342753834e-01; | |
| 82 Q0_2 = -2.2919342278749e-01; | |
| 83 Q0_3 = 7.4283116457276e-02; | |
| 84 Q0_4 = -1.2020661178873e-02; | |
| 85 Q0_5 = -4.2460029252999e-05; | |
| 86 Q0_6 = 0.0000000000000e+00; | |
| 87 Q0_7 = 0.0000000000000e+00; | |
| 88 Q0_8 = 0.0000000000000e+00; | |
| 89 Q0_9 = 0.0000000000000e+00; | |
| 90 Q1_0 = -6.6697342753834e-01; | |
| 91 Q1_1 = 0.0000000000000e+00; | |
| 92 Q1_2 = 8.8241196934163e-01; | |
| 93 Q1_3 = -2.6653314104602e-01; | |
| 94 Q1_4 = 5.5302527504316e-02; | |
| 95 Q1_5 = -4.2079282615860e-03; | |
| 96 Q1_6 = 0.0000000000000e+00; | |
| 97 Q1_7 = 0.0000000000000e+00; | |
| 98 Q1_8 = 0.0000000000000e+00; | |
| 99 Q1_9 = 0.0000000000000e+00; | |
| 100 Q2_0 = 2.2919342278749e-01; | |
| 101 Q2_1 = -8.8241196934163e-01; | |
| 102 Q2_2 = 0.0000000000000e+00; | |
| 103 Q2_3 = 8.2904844081126e-01; | |
| 104 Q2_4 = -2.1156614214635e-01; | |
| 105 Q2_5 = 3.9307676460659e-02; | |
| 106 Q2_6 = -3.5714285714286e-03; | |
| 107 Q2_7 = 0.0000000000000e+00; | |
| 108 Q2_8 = 0.0000000000000e+00; | |
| 109 Q2_9 = 0.0000000000000e+00; | |
| 110 Q3_0 = -7.4283116457276e-02; | |
| 111 Q3_1 = 2.6653314104602e-01; | |
| 112 Q3_2 = -8.2904844081126e-01; | |
| 113 Q3_3 = 0.0000000000000e+00; | |
| 114 Q3_4 = 8.0305501223679e-01; | |
| 115 Q3_5 = -2.0078040553808e-01; | |
| 116 Q3_6 = 3.8095238095238e-02; | |
| 117 Q3_7 = -3.5714285714286e-03; | |
| 118 Q3_8 = 0.0000000000000e+00; | |
| 119 Q3_9 = 0.0000000000000e+00; | |
| 120 Q4_0 = 1.2020661178873e-02; | |
| 121 Q4_1 = -5.5302527504316e-02; | |
| 122 Q4_2 = 2.1156614214635e-01; | |
| 123 Q4_3 = -8.0305501223679e-01; | |
| 124 Q4_4 = 0.0000000000000e+00; | |
| 125 Q4_5 = 8.0024692689207e-01; | |
| 126 Q4_6 = -2.0000000000000e-01; | |
| 127 Q4_7 = 3.8095238095238e-02; | |
| 128 Q4_8 = -3.5714285714286e-03; | |
| 129 Q4_9 = 0.0000000000000e+00; | |
| 130 Q5_0 = 4.2460029252999e-05; | |
| 131 Q5_1 = 4.2079282615860e-03; | |
| 132 Q5_2 = -3.9307676460659e-02; | |
| 133 Q5_3 = 2.0078040553808e-01; | |
| 134 Q5_4 = -8.0024692689207e-01; | |
| 135 Q5_5 = 0.0000000000000e+00; | |
| 136 Q5_6 = 8.0000000000000e-01; | |
| 137 Q5_7 = -2.0000000000000e-01; | |
| 138 Q5_8 = 3.8095238095238e-02; | |
| 139 Q5_9 = -3.5714285714286e-03; | |
| 140 for i = 1:BP | |
| 141 for j = 1:BP | |
| 142 Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
| 143 Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); | |
| 144 end | |
| 145 end | |
| 146 %%%%%%%%%%%%%%%%%%%%%%%%%%% | |
| 147 | |
| 148 %%%% Difference operator %% | |
| 149 D1 = H\Q; | |
| 150 %%%%%%%%%%%%%%%%%%%%%%%%%%% |
