Mercurial > repos > public > sbplib
view +sbp/+implementations/d1_noneq_minimal_8.m @ 266:bfa130b7abf6 operator_remake
Added error message for too few grid points to all implementation files.
author | Martin Almquist <martin.almquist@it.uu.se> |
---|---|
date | Fri, 09 Sep 2016 11:03:13 +0200 |
parents | 6009f2712d13 |
children | f7ac3cd6eeaa |
line wrap: on
line source
function [D1,H,x,h] = d1_noneq_minimal_8(N,L) % L: Domain length % N: Number of grid points if(nargin < 2) L = 1; end if(N<12) error('Operator requires at least 12 grid points'); end % BP: Number of boundary points % m: Number of nonequidistant spacings % order: Accuracy of interior stencil BP = 6; m = 2; order = 8; %%%% Non-equidistant grid points %%%%% x0 = 0.0000000000000e+00; x1 = 4.9439570885261e-01; x2 = 1.4051531374839e+00; x3 = 2.4051531374839e+00; x4 = 3.4051531374839e+00; x5 = 4.4051531374839e+00; x6 = 5.4051531374839e+00; xb = zeros(m+1,1); for i = 0:m xb(i+1) = eval(['x' num2str(i)]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Compute h %%%%%%%%%% h = L/(2*xb(end) + N-1-2*m); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Define grid %%%%%%%% x = h*[xb; linspace(xb(end)+1,L/h-xb(end)-1,N-2*(m+1))'; L/h-flip(xb) ]; %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Norm matrix %%%%%%%% P = zeros(BP,1); %#ok<*NASGU> P0 = 1.4523997892351e-01; P1 = 7.6864793350174e-01; P2 = 9.9116487068535e-01; P3 = 9.9992473335107e-01; P4 = 1.0002097054636e+00; P5 = 9.9996591555866e-01; for i = 0:BP-1 P(i+1) = eval(['P' num2str(i)]); end H = ones(N,1); H(1:BP) = P; H(end-BP+1:end) = flip(P); H = spdiags(h*H,0,N,N); %%%%%%%%%%%%%%%%%%%%%%%%% %%%% Q matrix %%%%%%%%%%% % interior stencil switch order case 2 d = [-1/2,0,1/2]; case 4 d = [1/12,-2/3,0,2/3,-1/12]; case 6 d = [-1/60,3/20,-3/4,0,3/4,-3/20,1/60]; case 8 d = [1/280,-4/105,1/5,-4/5,0,4/5,-1/5,4/105,-1/280]; case 10 d = [-1/1260,5/504,-5/84,5/21,-5/6,0,5/6,-5/21,5/84,-5/504,1/1260]; case 12 d = [1/5544,-1/385,1/56,-5/63,15/56,-6/7,0,6/7,-15/56,5/63,-1/56,1/385,-1/5544]; end d = repmat(d,N,1); Q = spdiags(d,-order/2:order/2,N,N); % Boundaries Q0_0 = -5.0000000000000e-01; Q0_1 = 6.6697342753834e-01; Q0_2 = -2.2919342278749e-01; Q0_3 = 7.4283116457276e-02; Q0_4 = -1.2020661178873e-02; Q0_5 = -4.2460029252999e-05; Q0_6 = 0.0000000000000e+00; Q0_7 = 0.0000000000000e+00; Q0_8 = 0.0000000000000e+00; Q0_9 = 0.0000000000000e+00; Q1_0 = -6.6697342753834e-01; Q1_1 = 0.0000000000000e+00; Q1_2 = 8.8241196934163e-01; Q1_3 = -2.6653314104602e-01; Q1_4 = 5.5302527504316e-02; Q1_5 = -4.2079282615860e-03; Q1_6 = 0.0000000000000e+00; Q1_7 = 0.0000000000000e+00; Q1_8 = 0.0000000000000e+00; Q1_9 = 0.0000000000000e+00; Q2_0 = 2.2919342278749e-01; Q2_1 = -8.8241196934163e-01; Q2_2 = 0.0000000000000e+00; Q2_3 = 8.2904844081126e-01; Q2_4 = -2.1156614214635e-01; Q2_5 = 3.9307676460659e-02; Q2_6 = -3.5714285714286e-03; Q2_7 = 0.0000000000000e+00; Q2_8 = 0.0000000000000e+00; Q2_9 = 0.0000000000000e+00; Q3_0 = -7.4283116457276e-02; Q3_1 = 2.6653314104602e-01; Q3_2 = -8.2904844081126e-01; Q3_3 = 0.0000000000000e+00; Q3_4 = 8.0305501223679e-01; Q3_5 = -2.0078040553808e-01; Q3_6 = 3.8095238095238e-02; Q3_7 = -3.5714285714286e-03; Q3_8 = 0.0000000000000e+00; Q3_9 = 0.0000000000000e+00; Q4_0 = 1.2020661178873e-02; Q4_1 = -5.5302527504316e-02; Q4_2 = 2.1156614214635e-01; Q4_3 = -8.0305501223679e-01; Q4_4 = 0.0000000000000e+00; Q4_5 = 8.0024692689207e-01; Q4_6 = -2.0000000000000e-01; Q4_7 = 3.8095238095238e-02; Q4_8 = -3.5714285714286e-03; Q4_9 = 0.0000000000000e+00; Q5_0 = 4.2460029252999e-05; Q5_1 = 4.2079282615860e-03; Q5_2 = -3.9307676460659e-02; Q5_3 = 2.0078040553808e-01; Q5_4 = -8.0024692689207e-01; Q5_5 = 0.0000000000000e+00; Q5_6 = 8.0000000000000e-01; Q5_7 = -2.0000000000000e-01; Q5_8 = 3.8095238095238e-02; Q5_9 = -3.5714285714286e-03; for i = 1:BP for j = 1:BP Q(i,j) = eval(['Q' num2str(i-1) '_' num2str(j-1)]); Q(N+1-i,N+1-j) = -eval(['Q' num2str(i-1) '_' num2str(j-1)]); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Difference operator %% D1 = H\Q; %%%%%%%%%%%%%%%%%%%%%%%%%%%