Mercurial > repos > public > sbplib
comparison +scheme/hypsyst2d.m @ 293:2d604d16842c feature/hypsyst
Works with varying coefficients and char boundary condition
author | Ylva Rydin <ylva.rydin@telia.com> |
---|---|
date | Fri, 23 Sep 2016 16:30:51 +0200 |
parents | 3d275c5e45b3 |
children | 8ff6ec6249e8 |
comparison
equal
deleted
inserted
replaced
292:3d275c5e45b3 | 293:2d604d16842c |
---|---|
1 classdef hypsyst2d < scheme.Scheme | 1 classdef hypsyst2d < scheme.Scheme |
2 properties | 2 properties |
3 m % Number of points in each direction, possibly a vector | 3 m % Number of points in each direction, possibly a vector |
4 n %size of system | |
4 h % Grid spacing | 5 h % Grid spacing |
5 x,y % Grid | 6 x,y % Grid |
6 X,Y % Values of x and y for each grid point | 7 X,Y % Values of x and y for each grid point |
7 order % Order accuracy for the approximation | 8 order % Order accuracy for the approximation |
8 | 9 |
29 m = [m m]; | 30 m = [m m]; |
30 end | 31 end |
31 | 32 |
32 m_x = m(1); | 33 m_x = m(1); |
33 m_y = m(2); | 34 m_y = m(2); |
35 obj.params=params; | |
34 | 36 |
35 obj.matrices=matrices; | 37 obj.matrices=matrices; |
36 | 38 |
37 ops_x = sbp.D2Standard(m_x,xlim,order); | 39 ops_x = sbp.D2Standard(m_x,xlim,order); |
38 ops_y = sbp.D2Standard(m_y,ylim,order); | 40 ops_y = sbp.D2Standard(m_y,ylim,order); |
41 obj.y=ops_y.x; | 43 obj.y=ops_y.x; |
42 | 44 |
43 obj.X = kr(obj.x,ones(m_y,1)); | 45 obj.X = kr(obj.x,ones(m_y,1)); |
44 obj.Y = kr(ones(m_x,1),obj.y); | 46 obj.Y = kr(ones(m_x,1),obj.y); |
45 | 47 |
48 obj.A=obj.matrixBuild(matrices.A); | |
49 obj.B=obj.matrixBuild(matrices.B); | |
50 obj.E=obj.matrixBuild(matrices.E); | |
51 | |
52 obj.n=length(matrices.A(obj.params,0,0)); | |
53 | |
54 I_n= eye(obj.n); | |
46 I_x = speye(m_x); obj.I_x=I_x; | 55 I_x = speye(m_x); obj.I_x=I_x; |
47 I_y = speye(m_y); obj.I_y=I_y; | 56 I_y = speye(m_y); obj.I_y=I_y; |
48 | 57 |
49 I_n= eye(4); | 58 |
50 | |
51 | |
52 D1_x = kr(kr(I_n,ops_x.D1),I_y); | 59 D1_x = kr(kr(I_n,ops_x.D1),I_y); |
53 obj.Hxi= kr(kr(I_n,ops_x.HI),I_y); | 60 obj.Hxi= kr(kr(I_n,ops_x.HI),I_y); |
54 D1_y=kr(I_n,kr(I_x,ops_y.D1)); | 61 D1_y=kr(I_n,kr(I_x,ops_y.D1)); |
55 obj.Hyi=kr(I_n,kr(I_x,ops_y.HI)); | 62 obj.Hyi=kr(I_n,kr(I_x,ops_y.HI)); |
56 | 63 |
60 obj.e_n=kr(I_n,kr(I_x,ops_y.e_r)); | 67 obj.e_n=kr(I_n,kr(I_x,ops_y.e_r)); |
61 | 68 |
62 obj.m=m; | 69 obj.m=m; |
63 obj.h=[ops_x.h ops_y.h]; | 70 obj.h=[ops_x.h ops_y.h]; |
64 obj.order=order; | 71 obj.order=order; |
65 obj.params=params; | 72 |
66 | |
67 obj.A=obj.matrixBuild(matrices.A); | |
68 obj.B=obj.matrixBuild(matrices.B); | |
69 obj.E=obj.matrixBuild(matrices.E); | |
70 | |
71 | |
72 obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E; | 73 obj.D=-obj.A*D1_x-obj.B*D1_y-obj.E; |
73 | 74 |
74 end | 75 end |
75 % Closure functions return the opertors applied to the own doamin to close the boundary | 76 % Closure functions return the opertors applied to the own doamin to close the boundary |
76 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. | 77 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. |
77 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. | 78 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. |
78 % type is a string specifying the type of boundary condition if there are several. | 79 % type is a string specifying the type of boundary condition if there are several. |
79 % data is a function returning the data that should be applied at the boundary. | 80 % data is a function returning the data that should be applied at the boundary. |
80 % neighbour_scheme is an instance of Scheme that should be interfaced to. | 81 % neighbour_scheme is an instance of Scheme that should be interfaced to. |
81 % neighbour_boundary is a string specifying which boundary to interface to. | 82 % neighbour_boundary is a string specifying which boundary to interface to. |
82 function [closure, penalty] = boundary_condition(obj,boundary,type) | 83 function [closure, penalty] = boundary_condition(obj,boundary,type,L) |
83 default_arg('type','neumann'); | 84 default_arg('type','neumann'); |
84 default_arg('data',0); | 85 default_arg('data',0); |
85 | 86 |
86 switch type | 87 switch type |
87 case{'c','char'} | 88 case{'c','char'} |
88 [closure,penalty]=GetBoundarydata_char(obj,boundary); | 89 [closure,penalty]=GetBoundarydata_char(obj,boundary); |
89 case{'wall'} | 90 case{'general'} |
90 [closure,penalty]=GetBoundarydata_wall(obj,boundary); | 91 [closure,penalty]=GeneralBoundaryCond(obj,boundary,L); |
91 otherwise | 92 otherwise |
92 error('No such boundary condition') | 93 error('No such boundary condition') |
93 end | 94 end |
94 end | 95 end |
95 | 96 |
168 | 169 |
169 pos=signVec(1); zeroval=signVec(2); neg=signVec(3); | 170 pos=signVec(1); zeroval=signVec(2); neg=signVec(3); |
170 | 171 |
171 switch boundPos | 172 switch boundPos |
172 case {'l'} | 173 case {'l'} |
173 tau=sparse(4*side,pos*side); | 174 tau=sparse(obj.n*side,pos*side); |
174 Vi_plus=Vi(1:pos*side,:); | 175 Vi_plus=Vi(1:pos*side,:); |
175 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); | 176 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); |
176 closure=Hi*e_*V*tau*Vi_plus*e_'; | 177 closure=Hi*e_*V*tau*Vi_plus*e_'; |
177 penalty=-Hi*e_*V*tau*Vi_plus; | 178 penalty=-Hi*e_*V*tau*Vi_plus; |
178 | 179 |
179 case {'r'} | 180 case {'r'} |
180 tau=sparse(4*side,neg*side); | 181 tau=sparse(obj.n*side,neg*side); |
181 tau((pos+zeroval)*side+1:4*side,:)=-abs(D((pos+zeroval)*side+1:4*side,(pos+zeroval)*side+1:4*side)); | 182 tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); |
182 Vi_minus=Vi((pos+zeroval)*side+1:4*side,:); | 183 Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); |
183 closure=Hi*e_*V*tau*Vi_minus*e_'; | 184 closure=Hi*e_*V*tau*Vi_minus*e_'; |
184 penalty=-Hi*e_*V*tau*Vi_minus; | 185 penalty=-Hi*e_*V*tau*Vi_minus; |
185 | 186 |
186 end | 187 end |
187 end | |
188 | |
189 function [closure, penalty]=GetBoundarydata_wall(obj,boundary) | |
190 switch boundary | |
191 case {'e','w'} | |
192 L=[0 1 0 0]'; | |
193 L=kr(L,obj.I_y); | |
194 L=L'; | |
195 case {'s','n'} | |
196 L=[0 0 1 0]'; | |
197 L=kr(L,obj.I_x); | |
198 L=L'; | |
199 | |
200 end | |
201 [closure,penalty]=GeneralBoundaryCond(obj,boundary,L); | |
202 end | 188 end |
203 | 189 |
204 | 190 |
205 function [closure,penalty]=GeneralBoundaryCond(obj,boundary,L) | 191 function [closure,penalty]=GeneralBoundaryCond(obj,boundary,L) |
206 params=obj.params; | 192 params=obj.params; |
207 x=obj.x; | 193 x=obj.x; |
208 y=obj.y; | 194 y=obj.y; |
209 | 195 L=obj.matrixBuild(L,x,y); |
210 side=max(length(x),length(y)); | 196 side=max(length(x),length(y)); |
211 | 197 |
212 | 198 |
213 switch boundary | 199 switch boundary |
214 case {'w','W','west'} | 200 case {'w','W','west'} |
241 | 227 |
242 | 228 |
243 | 229 |
244 switch boundPos | 230 switch boundPos |
245 case {'l'} | 231 case {'l'} |
246 tau=sparse(4*side,pos*side); | 232 tau=sparse(obj.n*side,pos*side); |
247 Vi_plus=Vi(1:pos*side,:); | 233 Vi_plus=Vi(1:pos*side,:); |
248 Vi_minus=Vi(pos*side+1:4*side,:); | 234 Vi_minus=Vi(pos*side+1:obj.n*side,:); |
249 | 235 |
250 V_plus=Vi(:,1:pos*side); | 236 V_plus=Vi(:,1:pos*side); |
251 V_minus=Vi(:,(pos+zeroval)*side+1:4*side); | 237 V_minus=Vi(:,(pos+zeroval)*side+1:obj.n*side); |
252 | 238 |
253 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); | 239 tau(1:pos*side,:)=-abs(D(1:pos*side,1:pos*side)); |
254 R=-inv(L*V_plus)*(L*V_minus); | 240 R=-inv(L*V_plus)*(L*V_minus); |
255 closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; | 241 closure=Hi*e_*V*tau*(Vi_plus-R*Vi_minus)*e_'; |
256 penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; | 242 penalty=-Hi*e_*V*tau*inv(L*V_plus)*L; |
257 | 243 |
258 | 244 |
259 case {'r'} | 245 case {'r'} |
260 tau=sparse(4*side,neg*side); | 246 tau=sparse(obj.n*side,neg*side); |
261 tau((pos+zeroval)*side+1:4*side,:)=-abs(D((pos+zeroval)*side+1:4*side,(pos+zeroval)*side+1:4*side)); | 247 tau((pos+zeroval)*side+1:obj.n*side,:)=-abs(D((pos+zeroval)*side+1:obj.n*side,(pos+zeroval)*side+1:obj.n*side)); |
262 Vi_plus=Vi(1:pos*side,:); | 248 Vi_plus=Vi(1:pos*side,:); |
263 Vi_minus=Vi((pos+zeroval)*side+1:4*side,:); | 249 Vi_minus=Vi((pos+zeroval)*side+1:obj.n*side,:); |
264 | 250 |
265 V_plus=Vi(:,1:pos*side); | 251 V_plus=Vi(:,1:pos*side); |
266 V_minus=Vi(:,(pos+zeroval)*side+1:4*side); | 252 V_minus=Vi(:,(pos+zeroval)*side+1:obj.n*side); |
267 R=-inv(L*V_minus)*(L*V_plus); | 253 R=-inv(L*V_minus)*(L*V_plus); |
268 closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; | 254 closure=Hi*e_*V*tau*(Vi_minus-R*Vi_plus)*e_'; |
269 penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; | 255 penalty=-Hi*e_*V*tau*inv(L*V_minus)*L; |
270 | 256 |
271 | 257 |
291 | 277 |
292 xs=x; ys=y; | 278 xs=x; ys=y; |
293 | 279 |
294 | 280 |
295 side=max(length(x),length(y)); | 281 side=max(length(x),length(y)); |
296 Dret=zeros(4,side*4); | 282 Dret=zeros(obj.n,side*obj.n); |
297 Vret=zeros(4,side*4); | 283 Vret=zeros(obj.n,side*obj.n); |
298 for ii=1:4 | 284 for ii=1:obj.n |
299 for jj=1:4 | 285 for jj=1:obj.n |
300 Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); | 286 Dret(jj,(ii-1)*side+1:side*ii)=eval(D(jj,ii)); |
301 Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); | 287 Vret(jj,(ii-1)*side+1:side*ii)=eval(V(jj,ii)); |
302 end | 288 end |
303 end | 289 end |
304 | 290 |