0
|
1 classdef Schrodinger < noname.Scheme
|
|
2 properties
|
|
3 m % Number of points in each direction, possibly a vector
|
|
4 h % Grid spacing
|
|
5 x % Grid
|
|
6 order % Order accuracy for the approximation
|
|
7
|
|
8 D % non-stabalized scheme operator
|
|
9 H % Discrete norm
|
|
10 M % Derivative norm
|
|
11 alpha
|
|
12
|
|
13 Hi
|
|
14 e_l
|
|
15 e_r
|
|
16 d1_l
|
|
17 d1_r
|
|
18 gamm
|
|
19 end
|
|
20
|
|
21 methods
|
|
22 % Solving SE in the form u_t = i*u_xx -i*V;
|
|
23 function obj = Schrodinger(m,xlim,order,V)
|
|
24 default_arg('V',0);
|
|
25
|
|
26 [x, h] = util.get_grid(xlim{:},m);
|
|
27
|
|
28 ops = sbp.Ordinary(m,h,order);
|
|
29
|
|
30 obj.D2 = sparse(ops.derivatives.D2);
|
|
31 obj.H = sparse(ops.norms.H);
|
|
32 obj.Hi = sparse(ops.norms.HI);
|
|
33 obj.M = sparse(ops.norms.M);
|
|
34 obj.e_l = sparse(ops.boundary.e_1);
|
|
35 obj.e_r = sparse(ops.boundary.e_m);
|
|
36 obj.d1_l = sparse(ops.boundary.S_1);
|
|
37 obj.d1_r = sparse(ops.boundary.S_m);
|
|
38
|
|
39
|
|
40 if isa(V,'function_handle')
|
|
41 V_vec = V(x);
|
|
42 else
|
|
43 V_vec = x*0 + V;
|
|
44 end
|
|
45
|
|
46 V_mat = spdiags(V,0,m,m);
|
|
47
|
|
48
|
|
49 D = 1i * obj.D2 - 1i * V;
|
|
50
|
|
51 obj.m = m;
|
|
52 obj.h = h;
|
|
53 obj.order = order;
|
|
54
|
|
55 obj.D = alpha*obj.D2;
|
|
56 obj.x = x;
|
|
57 end
|
|
58
|
|
59
|
|
60 % Closure functions return the opertors applied to the own doamin to close the boundary
|
|
61 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
|
|
62 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
|
|
63 % type is a string specifying the type of boundary condition if there are several.
|
|
64 % data is a function returning the data that should be applied at the boundary.
|
|
65 % neighbour_scheme is an instance of Scheme that should be interfaced to.
|
|
66 % neighbour_boundary is a string specifying which boundary to interface to.
|
|
67 function [closure, penalty] = boundary_condition(obj,boundary,type,data)
|
|
68 default_arg('type','neumann');
|
|
69 default_arg('data',0);
|
|
70
|
|
71 [e,d,s] = obj.get_boundary_ops(boundary);
|
|
72
|
|
73 switch type
|
|
74 % Dirichlet boundary condition
|
|
75 case {'D','d','dirichlet'}
|
|
76 tau = -1i* s * d;
|
|
77
|
|
78 closure = obj.Hi*tau*e';
|
|
79
|
|
80 pp = obj.Hi*p;
|
|
81 switch class(data)
|
|
82 case 'double'
|
|
83 penalty = pp*data;
|
|
84 case 'function_handle'
|
|
85 penalty = @(t)pp*data(t);
|
|
86 otherwise
|
|
87 error('Wierd data argument!')
|
|
88 end
|
|
89
|
|
90 % Unknown, boundary condition
|
|
91 otherwise
|
|
92 error('No such boundary condition: type = %s',type);
|
|
93 end
|
|
94 end
|
|
95
|
|
96 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
|
|
97 % u denotes the solution in the own domain
|
|
98 % v denotes the solution in the neighbour domain
|
|
99 [e_u,d_u,s_u] = obj.get_boundary_ops(boundary);
|
|
100 [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
|
|
101
|
|
102 a = s/2 * 1i ;
|
|
103 b = - a';
|
|
104
|
|
105 tau = b*d_u;
|
|
106 sig = a*e_u;
|
|
107
|
|
108 closure = obj.Hi * (tau*e_u' + sig*d_u');
|
|
109 penalty = obj.Hi * (-tau*e_v' - sig*d_v');
|
|
110 end
|
|
111
|
|
112 % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
|
|
113 % The right boundary is considered the positive boundary
|
|
114 function [e,d,s] = get_boundary_ops(obj,boundary)
|
|
115 switch boundary
|
|
116 case 'l'
|
|
117 e = obj.e_l;
|
|
118 d = obj.d1_l;
|
|
119 s = -1;
|
|
120 case 'r'
|
|
121 e = obj.e_r;
|
|
122 d = obj.d1_r;
|
|
123 s = 1;
|
|
124 otherwise
|
|
125 error('No such boundary: boundary = %s',boundary);
|
|
126 end
|
|
127 end
|
|
128
|
|
129 function N = size(obj)
|
|
130 N = obj.m;
|
|
131 end
|
|
132
|
|
133 end
|
|
134
|
|
135 methods(Static)
|
|
136 % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u
|
|
137 % and bound_v of scheme schm_v.
|
|
138 % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l')
|
|
139 function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v)
|
|
140 [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v);
|
|
141 [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u);
|
|
142 end
|
|
143 end
|
|
144 end |