Mercurial > repos > public > sbplib
diff +scheme/Schrodinger.m @ 0:48b6fb693025
Initial commit.
author | Jonatan Werpers <jonatan@werpers.com> |
---|---|
date | Thu, 17 Sep 2015 10:12:50 +0200 |
parents | |
children | 33f0654a2413 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/+scheme/Schrodinger.m Thu Sep 17 10:12:50 2015 +0200 @@ -0,0 +1,144 @@ +classdef Schrodinger < noname.Scheme + properties + m % Number of points in each direction, possibly a vector + h % Grid spacing + x % Grid + order % Order accuracy for the approximation + + D % non-stabalized scheme operator + H % Discrete norm + M % Derivative norm + alpha + + Hi + e_l + e_r + d1_l + d1_r + gamm + end + + methods + % Solving SE in the form u_t = i*u_xx -i*V; + function obj = Schrodinger(m,xlim,order,V) + default_arg('V',0); + + [x, h] = util.get_grid(xlim{:},m); + + ops = sbp.Ordinary(m,h,order); + + obj.D2 = sparse(ops.derivatives.D2); + obj.H = sparse(ops.norms.H); + obj.Hi = sparse(ops.norms.HI); + obj.M = sparse(ops.norms.M); + obj.e_l = sparse(ops.boundary.e_1); + obj.e_r = sparse(ops.boundary.e_m); + obj.d1_l = sparse(ops.boundary.S_1); + obj.d1_r = sparse(ops.boundary.S_m); + + + if isa(V,'function_handle') + V_vec = V(x); + else + V_vec = x*0 + V; + end + + V_mat = spdiags(V,0,m,m); + + + D = 1i * obj.D2 - 1i * V; + + obj.m = m; + obj.h = h; + obj.order = order; + + obj.D = alpha*obj.D2; + obj.x = x; + end + + + % Closure functions return the opertors applied to the own doamin to close the boundary + % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin. + % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'. + % type is a string specifying the type of boundary condition if there are several. + % data is a function returning the data that should be applied at the boundary. + % neighbour_scheme is an instance of Scheme that should be interfaced to. + % neighbour_boundary is a string specifying which boundary to interface to. + function [closure, penalty] = boundary_condition(obj,boundary,type,data) + default_arg('type','neumann'); + default_arg('data',0); + + [e,d,s] = obj.get_boundary_ops(boundary); + + switch type + % Dirichlet boundary condition + case {'D','d','dirichlet'} + tau = -1i* s * d; + + closure = obj.Hi*tau*e'; + + pp = obj.Hi*p; + switch class(data) + case 'double' + penalty = pp*data; + case 'function_handle' + penalty = @(t)pp*data(t); + otherwise + error('Wierd data argument!') + end + + % Unknown, boundary condition + otherwise + error('No such boundary condition: type = %s',type); + end + end + + function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary) + % u denotes the solution in the own domain + % v denotes the solution in the neighbour domain + [e_u,d_u,s_u] = obj.get_boundary_ops(boundary); + [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary); + + a = s/2 * 1i ; + b = - a'; + + tau = b*d_u; + sig = a*e_u; + + closure = obj.Hi * (tau*e_u' + sig*d_u'); + penalty = obj.Hi * (-tau*e_v' - sig*d_v'); + end + + % Ruturns the boundary ops and sign for the boundary specified by the string boundary. + % The right boundary is considered the positive boundary + function [e,d,s] = get_boundary_ops(obj,boundary) + switch boundary + case 'l' + e = obj.e_l; + d = obj.d1_l; + s = -1; + case 'r' + e = obj.e_r; + d = obj.d1_r; + s = 1; + otherwise + error('No such boundary: boundary = %s',boundary); + end + end + + function N = size(obj) + N = obj.m; + end + + end + + methods(Static) + % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u + % and bound_v of scheme schm_v. + % [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l') + function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v) + [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v); + [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u); + end + end +end \ No newline at end of file