diff +scheme/Schrodinger.m @ 0:48b6fb693025

Initial commit.
author Jonatan Werpers <jonatan@werpers.com>
date Thu, 17 Sep 2015 10:12:50 +0200
parents
children 33f0654a2413
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/+scheme/Schrodinger.m	Thu Sep 17 10:12:50 2015 +0200
@@ -0,0 +1,144 @@
+classdef Schrodinger < noname.Scheme
+    properties
+        m % Number of points in each direction, possibly a vector
+        h % Grid spacing
+        x % Grid
+        order % Order accuracy for the approximation
+
+        D % non-stabalized scheme operator
+        H % Discrete norm
+        M % Derivative norm
+        alpha
+
+        Hi
+        e_l
+        e_r
+        d1_l
+        d1_r
+        gamm
+    end
+
+    methods
+        % Solving SE in the form u_t = i*u_xx -i*V;
+        function obj = Schrodinger(m,xlim,order,V)
+            default_arg('V',0);
+
+            [x, h] = util.get_grid(xlim{:},m);
+
+            ops = sbp.Ordinary(m,h,order);
+
+            obj.D2 = sparse(ops.derivatives.D2);
+            obj.H =  sparse(ops.norms.H);
+            obj.Hi = sparse(ops.norms.HI);
+            obj.M =  sparse(ops.norms.M);
+            obj.e_l = sparse(ops.boundary.e_1);
+            obj.e_r = sparse(ops.boundary.e_m);
+            obj.d1_l = sparse(ops.boundary.S_1);
+            obj.d1_r = sparse(ops.boundary.S_m);
+
+
+            if isa(V,'function_handle')
+                V_vec = V(x);
+            else
+                V_vec = x*0 + V;
+            end
+
+            V_mat = spdiags(V,0,m,m);
+
+
+            D = 1i * obj.D2 - 1i * V;
+
+            obj.m = m;
+            obj.h = h;
+            obj.order = order;
+
+            obj.D = alpha*obj.D2;
+            obj.x = x;
+        end
+
+
+        % Closure functions return the opertors applied to the own doamin to close the boundary
+        % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
+        %       boundary            is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
+        %       type                is a string specifying the type of boundary condition if there are several.
+        %       data                is a function returning the data that should be applied at the boundary.
+        %       neighbour_scheme    is an instance of Scheme that should be interfaced to.
+        %       neighbour_boundary  is a string specifying which boundary to interface to.
+        function [closure, penalty] = boundary_condition(obj,boundary,type,data)
+            default_arg('type','neumann');
+            default_arg('data',0);
+
+            [e,d,s] = obj.get_boundary_ops(boundary);
+
+            switch type
+                % Dirichlet boundary condition
+                case {'D','d','dirichlet'}
+                    tau = -1i* s * d;
+
+                    closure = obj.Hi*tau*e';
+
+                    pp = obj.Hi*p;
+                    switch class(data)
+                        case 'double'
+                            penalty = pp*data;
+                        case 'function_handle'
+                            penalty = @(t)pp*data(t);
+                        otherwise
+                            error('Wierd data argument!')
+                    end
+
+                % Unknown, boundary condition
+                otherwise
+                    error('No such boundary condition: type = %s',type);
+            end
+        end
+
+        function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
+            % u denotes the solution in the own domain
+            % v denotes the solution in the neighbour domain
+            [e_u,d_u,s_u] = obj.get_boundary_ops(boundary);
+            [e_v,d_v,s_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
+
+            a =  s/2 * 1i ;
+            b = - a';
+
+            tau = b*d_u;
+            sig = a*e_u;
+
+            closure = obj.Hi * (tau*e_u' + sig*d_u');
+            penalty = obj.Hi * (-tau*e_v' - sig*d_v');
+        end
+
+        % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
+        % The right boundary is considered the positive boundary
+        function [e,d,s] = get_boundary_ops(obj,boundary)
+            switch boundary
+                case 'l'
+                    e = obj.e_l;
+                    d = obj.d1_l;
+                    s = -1;
+                case 'r'
+                    e = obj.e_r;
+                    d = obj.d1_r;
+                    s = 1;
+                otherwise
+                    error('No such boundary: boundary = %s',boundary);
+            end
+        end
+
+        function N = size(obj)
+            N = obj.m;
+        end
+
+    end
+
+    methods(Static)
+        % Calculates the matrcis need for the inteface coupling between boundary bound_u of scheme schm_u
+        % and bound_v of scheme schm_v.
+        %   [uu, uv, vv, vu] = inteface_couplong(A,'r',B,'l')
+        function [uu, uv, vv, vu] = interface_coupling(schm_u,bound_u,schm_v,bound_v)
+            [uu,uv] = schm_u.interface(bound_u,schm_v,bound_v);
+            [vv,vu] = schm_v.interface(bound_v,schm_u,bound_u);
+        end
+    end
+end
\ No newline at end of file