0
|
1 classdef SchmBeam2d < noname.Scheme
|
|
2 properties
|
|
3 m % Number of points in each direction, possibly a vector
|
|
4 N % Number of points total
|
|
5 h % Grid spacing
|
|
6 u % Grid values
|
|
7 x % Values of x and y for each
|
|
8 order % Order accuracy for the approximation
|
|
9
|
|
10 D % non-stabalized scheme operator
|
|
11 M % Derivative norm
|
|
12 alpha
|
|
13
|
|
14 H % Discrete norm
|
|
15 Hi
|
|
16 e_l, e_r
|
|
17
|
|
18 end
|
|
19
|
|
20 methods
|
|
21 function obj = SchmBeam2d(m,xlim,order,gamma,opsGen)
|
|
22 default_arg('opsGen',@sbp.Ordinary);
|
|
23 default_arg('gamma', 1.4);
|
|
24
|
|
25 [x, h] = util.get_grid(xlim{:},m_x);
|
|
26
|
|
27 ops = opsGen(m_x,h_x,order);
|
|
28
|
|
29 I_x = speye(m);
|
|
30 I_3 = speye(3);
|
|
31
|
|
32 D1 = sparse(ops.derivatives.D1);
|
|
33 H = sparse(ops.norms.H);
|
|
34 Hi = sparse(ops.norms.HI);
|
|
35 e_l = sparse(ops.boundary.e_1);
|
|
36 e_r = sparse(ops.boundary.e_m);
|
|
37
|
|
38 D1 = kr(D1, I_3);
|
|
39
|
|
40 % Norms
|
|
41 obj.H = kr(H,I_3);
|
|
42
|
|
43 % Boundary operators
|
|
44 obj.e_l = kr(e_l,I_3);
|
|
45 obj.e_r = kr(e_r,I_3);
|
|
46
|
|
47 obj.m = m;
|
|
48 obj.h = h;
|
|
49 obj.order = order;
|
|
50
|
|
51
|
|
52 % Man har Q_t+F_x=0 i 1D Euler, där
|
|
53 % q=[rho, rho*u, e]^T
|
|
54 % F=[rho*u, rho*u^2+p, (e+p)*u] ^T
|
|
55 % p=(gamma-1)*(e-rho/2*u^2);
|
|
56
|
|
57
|
|
58 %Solving on form q_t + F_x = 0
|
|
59 function o = F(q)
|
|
60 o = [q(2); q(2).^2/q(1) + p(q); (q(3)+p(q))*q(2)/q(1)];
|
|
61 end
|
|
62
|
|
63 % Equation of state
|
|
64 function o = p(q)
|
|
65 o = (gamma-1)*(q(3)-q(2).^2/q(1)/2);
|
|
66 end
|
|
67
|
|
68
|
|
69 % R =
|
|
70 % [sqrt(2*(gamma-1))*rho , rho , rho ;
|
|
71 % sqrt(2*(gamma-1))*rho*u , rho*(u+c) , rho*(u-c) ;
|
|
72 % sqrt(2*(gamma-1))*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c, e+(gamma-1)*(e-rho*u^2/2)-rho*u*c]);
|
|
73 function o = R(q)
|
|
74 rho = q(1);
|
|
75 u = q(2)/q(1);
|
|
76 e = q(3);
|
|
77
|
|
78 sqrt2gamm = sqrt(2*(gamma-1));
|
|
79
|
|
80 o = [
|
|
81 sqrt2gamm*rho , rho , rho ;
|
|
82 sqrt2gamm*rho*u , rho*(u+c) , rho*(u-c) ;
|
|
83 sqrt2gamm*rho*u^2/2, e+(gamma-1)*(e-rho*u^2/2)+rho*u*c , e+(gamma-1)*(e-rho*u^2/2)-rho*u*c
|
|
84 ];
|
|
85 end
|
|
86
|
|
87 function o = Fx(q)
|
|
88 o = zeros(size(q));
|
|
89 for i = 1:3:3*m
|
|
90 o(i:i+2) = F(q(i:i+2));
|
|
91 end
|
|
92 end
|
|
93
|
|
94
|
|
95
|
|
96 % A=R*Lambda*inv(R), där Lambda=diag(u, u+c, u-c) (c är ljudhastigheten)
|
|
97 % c^2=gamma*p/rho
|
|
98 % function o = A(rho,u,e)
|
|
99 % end
|
|
100
|
|
101
|
|
102 obj.D = @Fx;
|
|
103 obj.u = x;
|
|
104 obj.x = kr(x,ones(3,1));
|
|
105 end
|
|
106
|
|
107
|
|
108 % Closure functions return the opertors applied to the own doamin to close the boundary
|
|
109 % Penalty functions return the opertors to force the solution. In the case of an interface it returns the operator applied to the other doamin.
|
|
110 % boundary is a string specifying the boundary e.g. 'l','r' or 'e','w','n','s'.
|
|
111 % type is a string specifying the type of boundary condition if there are several.
|
|
112 % data is a function returning the data that should be applied at the boundary.
|
|
113 % neighbour_scheme is an instance of Scheme that should be interfaced to.
|
|
114 % neighbour_boundary is a string specifying which boundary to interface to.
|
|
115 function [closure, penalty] = boundary_condition(obj,boundary, alpha,data)
|
|
116 default_arg('alpha',0);
|
|
117 default_arg('data',0);
|
|
118
|
|
119 % Boundary condition on form
|
|
120 % w_in = w_out + g, where g is data
|
|
121
|
|
122 [e,s] = obj.get_boundary_ops(boundary);
|
|
123
|
|
124 tuning = 1; % ?????????????????????????
|
|
125
|
|
126 tau = R(q)*lambda(q)*tuning; % SHOULD THIS BE abs(lambda)?????
|
|
127
|
|
128 function closure_fun(q,t)
|
|
129 q_b = e * q;
|
|
130 end
|
|
131
|
|
132 function penalty_fun(q,t)
|
|
133 end
|
|
134
|
|
135
|
|
136
|
|
137
|
|
138
|
|
139 % tau1 < -alpha^2/gamma
|
|
140
|
|
141 tau1 = tuning * alpha/delt;
|
|
142 tau4 = s*alpha;
|
|
143
|
|
144 sig2 = tuning * alpha/gamm;
|
|
145 sig3 = -s*alpha;
|
|
146
|
|
147 tau = tau1*e+tau4*d3;
|
|
148 sig = sig2*d1+sig3*d2;
|
|
149
|
|
150 closure = halfnorm_inv*(tau*e' + sig*d1');
|
|
151
|
|
152 pp_e = halfnorm_inv*tau;
|
|
153 pp_d = halfnorm_inv*sig;
|
|
154 switch class(data)
|
|
155 case 'double'
|
|
156 penalty_e = pp_e*data;
|
|
157 penalty_d = pp_d*data;
|
|
158 case 'function_handle'
|
|
159 penalty_e = @(t)pp_e*data(t);
|
|
160 penalty_d = @(t)pp_d*data(t);
|
|
161 otherwise
|
|
162 error('Wierd data argument!')
|
|
163 end
|
|
164
|
|
165 end
|
|
166
|
|
167 function [closure, penalty] = interface(obj,boundary,neighbour_scheme,neighbour_boundary)
|
|
168 % u denotes the solution in the own domain
|
|
169 % v denotes the solution in the neighbour domain
|
|
170 [e_u,d1_u,d2_u,d3_u,s_u,gamm_u,delt_u, halfnorm_inv] = obj.get_boundary_ops(boundary);
|
|
171 [e_v,d1_v,d2_v,d3_v,s_v,gamm_v,delt_v] = neighbour_scheme.get_boundary_ops(neighbour_boundary);
|
|
172
|
|
173 tuning = 2;
|
|
174
|
|
175 alpha_u = obj.alpha;
|
|
176 alpha_v = neighbour_scheme.alpha;
|
|
177
|
|
178 tau1 = ((alpha_u/2)/delt_u + (alpha_v/2)/delt_v)/2*tuning;
|
|
179 % tau1 = (alpha_u/2 + alpha_v/2)/(2*delt_u)*tuning;
|
|
180 tau4 = s_u*alpha_u/2;
|
|
181
|
|
182 sig2 = ((alpha_u/2)/gamm_u + (alpha_v/2)/gamm_v)/2*tuning;
|
|
183 sig3 = -s_u*alpha_u/2;
|
|
184
|
|
185 phi2 = s_u*1/2;
|
|
186
|
|
187 psi1 = -s_u*1/2;
|
|
188
|
|
189 tau = tau1*e_u + tau4*d3_u;
|
|
190 sig = sig2*d1_u + sig3*d2_u ;
|
|
191 phi = phi2*d1_u ;
|
|
192 psi = psi1*e_u ;
|
|
193
|
|
194 closure = halfnorm_inv*(tau*e_u' + sig*d1_u' + phi*alpha_u*d2_u' + psi*alpha_u*d3_u');
|
|
195 penalty = -halfnorm_inv*(tau*e_v' + sig*d1_v' + phi*alpha_v*d2_v' + psi*alpha_v*d3_v');
|
|
196 end
|
|
197
|
|
198 % Ruturns the boundary ops and sign for the boundary specified by the string boundary.
|
|
199 % The right boundary is considered the positive boundary
|
|
200 function [e,d1,d2,d3,s,gamm, delt, halfnorm_inv] = get_boundary_ops(obj,boundary)
|
|
201 switch boundary
|
|
202 case 'w'
|
|
203 e = obj.e_w;
|
|
204 d1 = obj.d1_w;
|
|
205 d2 = obj.d2_w;
|
|
206 d3 = obj.d3_w;
|
|
207 s = -1;
|
|
208 gamm = obj.gamm_x;
|
|
209 delt = obj.delt_x;
|
|
210 halfnorm_inv = obj.Hix;
|
|
211 case 'e'
|
|
212 e = obj.e_e;
|
|
213 d1 = obj.d1_e;
|
|
214 d2 = obj.d2_e;
|
|
215 d3 = obj.d3_e;
|
|
216 s = 1;
|
|
217 gamm = obj.gamm_x;
|
|
218 delt = obj.delt_x;
|
|
219 halfnorm_inv = obj.Hix;
|
|
220 case 's'
|
|
221 e = obj.e_s;
|
|
222 d1 = obj.d1_s;
|
|
223 d2 = obj.d2_s;
|
|
224 d3 = obj.d3_s;
|
|
225 s = -1;
|
|
226 gamm = obj.gamm_y;
|
|
227 delt = obj.delt_y;
|
|
228 halfnorm_inv = obj.Hiy;
|
|
229 case 'n'
|
|
230 e = obj.e_n;
|
|
231 d1 = obj.d1_n;
|
|
232 d2 = obj.d2_n;
|
|
233 d3 = obj.d3_n;
|
|
234 s = 1;
|
|
235 gamm = obj.gamm_y;
|
|
236 delt = obj.delt_y;
|
|
237 halfnorm_inv = obj.Hiy;
|
|
238 otherwise
|
|
239 error('No such boundary: boundary = %s',boundary);
|
|
240 end
|
|
241 end
|
|
242
|
|
243 function N = size(obj)
|
|
244 N = prod(obj.m);
|
|
245 end
|
|
246
|
|
247 end
|
|
248 end
|